📄 vdbeaux.c
字号:
*/int sqliteVdbeList( Vdbe *p /* The VDBE */){ sqlite *db = p->db; int i; int rc = SQLITE_OK; static char *azColumnNames[] = { "addr", "opcode", "p1", "p2", "p3", "int", "text", "int", "int", "text", 0 }; assert( p->popStack==0 ); assert( p->explain ); p->azColName = azColumnNames; p->azResColumn = p->zArgv; for(i=0; i<5; i++) p->zArgv[i] = p->aStack[i].zShort; i = p->pc; if( i>=p->nOp ){ p->rc = SQLITE_OK; rc = SQLITE_DONE; }else if( db->flags & SQLITE_Interrupt ){ db->flags &= ~SQLITE_Interrupt; if( db->magic!=SQLITE_MAGIC_BUSY ){ p->rc = SQLITE_MISUSE; }else{ p->rc = SQLITE_INTERRUPT; } rc = SQLITE_ERROR; sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0); }else{ sprintf(p->zArgv[0],"%d",i); sprintf(p->zArgv[2],"%d", p->aOp[i].p1); sprintf(p->zArgv[3],"%d", p->aOp[i].p2); if( p->aOp[i].p3type==P3_POINTER ){ sprintf(p->aStack[4].zShort, "ptr(%#lx)", (long)p->aOp[i].p3); p->zArgv[4] = p->aStack[4].zShort; }else{ p->zArgv[4] = p->aOp[i].p3; } p->zArgv[1] = sqliteOpcodeNames[p->aOp[i].opcode]; p->pc = i+1; p->azResColumn = p->zArgv; p->nResColumn = 5; p->rc = SQLITE_OK; rc = SQLITE_ROW; } return rc;}/*** Prepare a virtual machine for execution. This involves things such** as allocating stack space and initializing the program counter.** After the VDBE has be prepped, it can be executed by one or more** calls to sqliteVdbeExec(). */void sqliteVdbeMakeReady( Vdbe *p, /* The VDBE */ int nVar, /* Number of '?' see in the SQL statement */ int isExplain /* True if the EXPLAIN keywords is present */){ int n; assert( p!=0 ); assert( p->magic==VDBE_MAGIC_INIT ); /* Add a HALT instruction to the very end of the program. */ if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){ sqliteVdbeAddOp(p, OP_Halt, 0, 0); } /* No instruction ever pushes more than a single element onto the ** stack. And the stack never grows on successive executions of the ** same loop. So the total number of instructions is an upper bound ** on the maximum stack depth required. ** ** Allocation all the stack space we will ever need. */ if( p->aStack==0 ){ p->nVar = nVar; assert( nVar>=0 ); n = isExplain ? 10 : p->nOp; p->aStack = sqliteMalloc( n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zArgv */ + p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */ ); p->zArgv = (char**)&p->aStack[n]; p->azColName = (char**)&p->zArgv[n]; p->azVar = (char**)&p->azColName[n]; p->anVar = (int*)&p->azVar[p->nVar]; p->abVar = (u8*)&p->anVar[p->nVar]; } sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0); p->agg.pSearch = 0;#ifdef MEMORY_DEBUG if( sqliteOsFileExists("vdbe_trace") ){ p->trace = stdout; }#endif p->pTos = &p->aStack[-1]; p->pc = 0; p->rc = SQLITE_OK; p->uniqueCnt = 0; p->returnDepth = 0; p->errorAction = OE_Abort; p->undoTransOnError = 0; p->popStack = 0; p->explain |= isExplain; p->magic = VDBE_MAGIC_RUN;#ifdef VDBE_PROFILE { int i; for(i=0; i<p->nOp; i++){ p->aOp[i].cnt = 0; p->aOp[i].cycles = 0; } }#endif}/*** Remove any elements that remain on the sorter for the VDBE given.*/void sqliteVdbeSorterReset(Vdbe *p){ while( p->pSort ){ Sorter *pSorter = p->pSort; p->pSort = pSorter->pNext; sqliteFree(pSorter->zKey); sqliteFree(pSorter->pData); sqliteFree(pSorter); }}/*** Reset an Agg structure. Delete all its contents. **** For installable aggregate functions, if the step function has been** called, make sure the finalizer function has also been called. The** finalizer might need to free memory that was allocated as part of its** private context. If the finalizer has not been called yet, call it** now.*/void sqliteVdbeAggReset(Agg *pAgg){ int i; HashElem *p; for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){ AggElem *pElem = sqliteHashData(p); assert( pAgg->apFunc!=0 ); for(i=0; i<pAgg->nMem; i++){ Mem *pMem = &pElem->aMem[i]; if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){ sqlite_func ctx; ctx.pFunc = pAgg->apFunc[i]; ctx.s.flags = MEM_Null; ctx.pAgg = pMem->z; ctx.cnt = pMem->i; ctx.isStep = 0; ctx.isError = 0; (*pAgg->apFunc[i]->xFinalize)(&ctx); if( pMem->z!=0 && pMem->z!=pMem->zShort ){ sqliteFree(pMem->z); } if( ctx.s.flags & MEM_Dyn ){ sqliteFree(ctx.s.z); } }else if( pMem->flags & MEM_Dyn ){ sqliteFree(pMem->z); } } sqliteFree(pElem); } sqliteHashClear(&pAgg->hash); sqliteFree(pAgg->apFunc); pAgg->apFunc = 0; pAgg->pCurrent = 0; pAgg->pSearch = 0; pAgg->nMem = 0;}/*** Delete a keylist*/void sqliteVdbeKeylistFree(Keylist *p){ while( p ){ Keylist *pNext = p->pNext; sqliteFree(p); p = pNext; }}/*** Close a cursor and release all the resources that cursor happens** to hold.*/void sqliteVdbeCleanupCursor(Cursor *pCx){ if( pCx->pCursor ){ sqliteBtreeCloseCursor(pCx->pCursor); } if( pCx->pBt ){ sqliteBtreeClose(pCx->pBt); } sqliteFree(pCx->pData); memset(pCx, 0, sizeof(Cursor));}/*** Close all cursors*/static void closeAllCursors(Vdbe *p){ int i; for(i=0; i<p->nCursor; i++){ sqliteVdbeCleanupCursor(&p->aCsr[i]); } sqliteFree(p->aCsr); p->aCsr = 0; p->nCursor = 0;}/*** Clean up the VM after execution.**** This routine will automatically close any cursors, lists, and/or** sorters that were left open. It also deletes the values of** variables in the azVariable[] array.*/static void Cleanup(Vdbe *p){ int i; if( p->aStack ){ Mem *pTos = p->pTos; while( pTos>=p->aStack ){ if( pTos->flags & MEM_Dyn ){ sqliteFree(pTos->z); } pTos--; } p->pTos = pTos; } closeAllCursors(p); if( p->aMem ){ for(i=0; i<p->nMem; i++){ if( p->aMem[i].flags & MEM_Dyn ){ sqliteFree(p->aMem[i].z); } } } sqliteFree(p->aMem); p->aMem = 0; p->nMem = 0; if( p->pList ){ sqliteVdbeKeylistFree(p->pList); p->pList = 0; } sqliteVdbeSorterReset(p); if( p->pFile ){ if( p->pFile!=stdin ) fclose(p->pFile); p->pFile = 0; } if( p->azField ){ sqliteFree(p->azField); p->azField = 0; } p->nField = 0; if( p->zLine ){ sqliteFree(p->zLine); p->zLine = 0; } p->nLineAlloc = 0; sqliteVdbeAggReset(&p->agg); if( p->aSet ){ for(i=0; i<p->nSet; i++){ sqliteHashClear(&p->aSet[i].hash); } } sqliteFree(p->aSet); p->aSet = 0; p->nSet = 0; if( p->keylistStack ){ int ii; for(ii = 0; ii < p->keylistStackDepth; ii++){ sqliteVdbeKeylistFree(p->keylistStack[ii]); } sqliteFree(p->keylistStack); p->keylistStackDepth = 0; p->keylistStack = 0; } sqliteFree(p->contextStack); p->contextStack = 0; sqliteFree(p->zErrMsg); p->zErrMsg = 0;}/*** Clean up a VDBE after execution but do not delete the VDBE just yet.** Write any error messages into *pzErrMsg. Return the result code.**** After this routine is run, the VDBE should be ready to be executed** again.*/int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){ sqlite *db = p->db; int i; if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0); return SQLITE_MISUSE; } if( p->zErrMsg ){ if( pzErrMsg && *pzErrMsg==0 ){ *pzErrMsg = p->zErrMsg; }else{ sqliteFree(p->zErrMsg); } p->zErrMsg = 0; }else if( p->rc ){ sqliteSetString(pzErrMsg, sqlite_error_string(p->rc), (char*)0); } Cleanup(p); if( p->rc!=SQLITE_OK ){ switch( p->errorAction ){ case OE_Abort: { if( !p->undoTransOnError ){ for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt ){ sqliteBtreeRollbackCkpt(db->aDb[i].pBt); } } break; } /* Fall through to ROLLBACK */ } case OE_Rollback: { sqliteRollbackAll(db); db->flags &= ~SQLITE_InTrans; db->onError = OE_Default; break; } default: { if( p->undoTransOnError ){ sqliteRollbackAll(db); db->flags &= ~SQLITE_InTrans; db->onError = OE_Default; } break; } } sqliteRollbackInternalChanges(db); } for(i=0; i<db->nDb; i++){ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){ sqliteBtreeCommitCkpt(db->aDb[i].pBt); db->aDb[i].inTrans = 1; } } assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 );#ifdef VDBE_PROFILE { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ int i; fprintf(out, "---- "); for(i=0; i<p->nOp; i++){ fprintf(out, "%02x", p->aOp[i].opcode); } fprintf(out, "\n"); for(i=0; i<p->nOp; i++){ fprintf(out, "%6d %10lld %8lld ", p->aOp[i].cnt, p->aOp[i].cycles, p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 ); sqliteVdbePrintOp(out, i, &p->aOp[i]); } fclose(out); } }#endif p->magic = VDBE_MAGIC_INIT; return p->rc;}/*** Clean up and delete a VDBE after execution. Return an integer which is** the result code. Write any error message text into *pzErrMsg.*/int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){ int rc; sqlite *db; if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0); return SQLITE_MISUSE; } db = p->db; rc = sqliteVdbeReset(p, pzErrMsg); sqliteVdbeDelete(p); if( db->want_to_close && db->pVdbe==0 ){ sqlite_close(db); } if( rc==SQLITE_SCHEMA ){ sqliteResetInternalSchema(db, 0); } return rc;}/*** Set the values of all variables. Variable $1 in the original SQL will** be the string azValue[0]. $2 will have the value azValue[1]. And** so forth. If a value is out of range (for example $3 when nValue==2)** then its value will be NULL.**** This routine overrides any prior call.*/int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){ Vdbe *p = (Vdbe*)pVm; if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){ return SQLITE_MISUSE; } if( i<1 || i>p->nVar ){ return SQLITE_RANGE; } i--; if( p->abVar[i] ){ sqliteFree(p->azVar[i]); } if( zVal==0 ){ copy = 0; len = 0; } if( len<0 ){ len = strlen(zVal)+1; } if( copy ){ p->azVar[i] = sqliteMalloc( len ); if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len); }else{ p->azVar[i] = (char*)zVal; } p->abVar[i] = copy; p->anVar[i] = len; return SQLITE_OK;}/*** Delete an entire VDBE.*/void sqliteVdbeDelete(Vdbe *p){ int i; if( p==0 ) return; Cleanup(p); if( p->pPrev ){ p->pPrev->pNext = p->pNext; }else{ assert( p->db->pVdbe==p ); p->db->pVdbe = p->pNext; } if( p->pNext ){ p->pNext->pPrev = p->pPrev; } p->pPrev = p->pNext = 0; if( p->nOpAlloc==0 ){ p->aOp = 0; p->nOp = 0; } for(i=0; i<p->nOp; i++){ if( p->aOp[i].p3type==P3_DYNAMIC ){ sqliteFree(p->aOp[i].p3); } } for(i=0; i<p->nVar; i++){ if( p->abVar[i] ) sqliteFree(p->azVar[i]); } sqliteFree(p->aOp); sqliteFree(p->aLabel); sqliteFree(p->aStack); p->magic = VDBE_MAGIC_DEAD; sqliteFree(p);}/*** Convert an integer in between the native integer format and** the bigEndian format used as the record number for tables.**** The bigEndian format (most significant byte first) is used for** record numbers so that records will sort into the correct order** even though memcmp() is used to compare the keys. On machines** whose native integer format is little endian (ex: i486) the** order of bytes is reversed. On native big-endian machines** (ex: Alpha, Sparc, Motorola) the byte order is the same.**** This function is its own inverse. In other words**** X == byteSwap(byteSwap(X))*/int sqliteVdbeByteSwap(int x){ union { char zBuf[sizeof(int)]; int i; } ux; ux.zBuf[3] = x&0xff; ux.zBuf[2] = (x>>8)&0xff; ux.zBuf[1] = (x>>16)&0xff; ux.zBuf[0] = (x>>24)&0xff; return ux.i;}/*** If a MoveTo operation is pending on the given cursor, then do that** MoveTo now. Return an error code. If no MoveTo is pending, this** routine does nothing and returns SQLITE_OK.*/int sqliteVdbeCursorMoveto(Cursor *p){ if( p->deferredMoveto ){ int res; extern int sqlite_search_count; sqliteBtreeMoveto(p->pCursor, (char*)&p->movetoTarget, sizeof(int), &res); p->lastRecno = keyToInt(p->movetoTarget); p->recnoIsValid = res==0; if( res<0 ){ sqliteBtreeNext(p->pCursor, &res); } sqlite_search_count++; p->deferredMoveto = 0; } return SQLITE_OK;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -