📄 getfod.m
字号:
function [K,L,T]=getfod(G,method)
K=dcgain(G);
if nargin==1
[Kc,Pm,wc,wcp]=margin(G); ikey=0;
L=1.6*pi/(3*wc); T=0.5*Kc*K*L;
if finite(Kc),
x0=[L;T];
while ikey==0,
ww1=wc*x0(1); ww2=wc*x0(2);
FF=[K*Kc*(cos(ww1)-ww2*sin(ww1))+1+ww2^2;
sin(ww1)+ww2*cos(ww1)];
J=[-K*Kc*wc*sin(ww1)-K*Kc*wc*ww2*cos(ww1), ...
-K*Kc*wc*sin(ww1)+2*wc*ww2;
wc*cos(ww1)-wc*ww2*sin(ww1), wc*cos(ww1)];
x1=x0-inv(J)*FF;
if norm(x1-x0)<1e-8,
ikey=1; else, x0=x1;
end, end
L=x0(1); T=x0(2);
end
elseif nargin==2 & method==1
[n1,d1]=tfderv(G.num{1},G.den{1});
[n2,d2]=tfderv(n1,d1);
K1=dcgain(n1,d1); K2=dcgain(n2,d2);
Tar=-K1/K; T=sqrt(K2/K-Tar^2); L=Tar-T;
end
%evaluate the derivative of a/b
function [e,f]=tfderv(b,a)
f=conv(a,a);
e1=conv((length(b)-1:-1:1).*...
b(1:length(b)-1),a);
e2=conv((length(a)-1:-1:1).*...
a(1:length(a)-1),b);
maxL=max(length(e1),length(e2));
e=[zeros(1,maxL-length(e1)) e1]-...
[zeros(1,maxL-length(e2)) e2];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -