📄 sga.c
字号:
/********************************************************************/
/* 基于基本遗传算法的分层遗传改进算法函数最优化 SHGA.C */
/* A Function Optimizer using Simple Genetic Algorithm */
/* developed from the Pascal SGA code presented by David E.Goldberg */
/* 华南理工大学电子与信息学院 苏勇 2004年4月*/
/********************************************************************/
#include <stdio.h>
#include <math.h>
/* 全局变量 */
struct individual /* 个体*/
{
unsigned *chrom; /* 染色体 */
double fitness; /* 个体适应度*/
double varible; /* 个体对应的变量值*/
int xsite; /* 低层交叉位置 */
int xsiteA; /* 高层交叉位置 */
int parent[2]; /* 父个体 */
int parentA[2]; /* 高层父个体(父代子群) */
int *utility; /* 特定数据指针变量 */
};
struct bestever /* 最佳个体*/
{
unsigned *chrom; /* 低层遗传运算所得最佳个体染色体*/
unsigned *chromA; /* 全局最佳个体染色体 */
double fitness; /* 最佳个体适应度 */
double varible; /* 最佳个体对应的变量值 */
int generation; /* 最佳个体生成代 */
int subpopulation; /* 最佳个体所在子种群 */
};
struct individual **oldpop; /* 当前代种群 */
struct individual **newpop; /* 新一代种群 */
struct bestever bestfit; /* 最佳个体 */
double sumfitness; /* 种群中个体适应度累计 */
double sumA; /* 所有子群平均适应度累计 */
double max; /* 种群中个体最大适应度 */
double maxA; /* 全局最佳适应度值 */
double avg; /* 种群中个体平均适应度 */
double min; /* 种群中个体最小适应度 */
double minA; /* 全局最小适应度值 */
double *A; /* 子群平均适应度值数组 */
float pcross; /* 低层交叉概率 */
float pcrossA; /* 高层交叉概率 */
float pmutation; /* 低层变异概率 */
float pmutationA; /* 高层变异概率 */
int popsize; /* 种群大小 */
int lchrom; /* 染色体长度*/
int chromsize; /* 存储一染色体所需字节数 */
int gen; /* 当前世代数 */
int maxgen; /* 最大世代数 */
int run; /* 低层遗传当前运行次数 */
int runA; /* 高层遗传当前运行次数 */
int maxruns; /* 总运行次数 */
int printstrings; /* 输出染色体编码的判断,0 -- 不输出, 1 -- 输出 */
int nmutation; /* 低层当前代变异发生次数 */
int nmutationA; /* 高层当前代变异发生次数 */
int ncross; /* 低层当前代交叉发生次数 */
int ncrossA; /* 高层当前代交叉发生次数 */
int subpopnum; /* 子种群个数 */
int subpop; /* 当前子种群 */
float randomseed; /* 随机数种子 */
int shu; /* 当前子群 */
double varibleA; /* 全局最佳染色体对应变量值 */
int genA; /* 全局最佳染色体所在代数 */
/* 随机数发生器使用的静态变量 */
static double oldrand[55];
static int jrand;
static double rndx2;
static int rndcalcflag;
/* 输出文件指针 */
FILE *outfp ;
/* 函数定义 */
void advance_random();
int flip(float);rnd(int, int);
void randomize();
double randomnormaldeviate();
float randomperc(),rndreal(float,float);
void warmup_random(float);
void initialize(),initdata(),initpop();
void initreport(),generation(),initmalloc();
void freeall(),nomemory(char *),report();
void reportA();
void writepop(),writechrom(unsigned *);
void preselect();
void statistics(struct individual *);
void title(),repchar (FILE *,char *,int);
void skip(FILE *,int);
int select();
void objfunc(struct individual *);
/* 低层交叉变异函数 */
int crossover (unsigned *, unsigned *, unsigned *, unsigned *);
void mutation(unsigned *);
/* 高层交叉变异函数 */
void CMTransA();
int selectA();
void preselectA();
void initialize() /* 遗传算法初始化 */
{
/* 键盘输入遗传算法参数 */
initdata();
/* 确定染色体的字节长度 */
chromsize = (lchrom/(8*sizeof(unsigned)));
if(lchrom%(8*sizeof(unsigned))) chromsize++;
/*分配给全局数据结构空间 */
initmalloc();
initreport();
}
void initdata() /* 遗传算法参数输入 */
{
char answer[2];
popsize=30;
if((popsize%2) != 0)
{
fprintf(outfp, "种群大小已设置为偶数\n");
popsize++;
}
lchrom=22; /* 染色体长度定义为22 */
printstrings=1;
maxgen=100; /* 低层运算100代 */
pcross=0.8; /* 低层交叉概率0.8 */
pcrossA=0.2; /* 高层交叉概率0.6 */
pmutation=0.05; /* 低层变异概率0.05 */
pmutationA=0.05; /* 高层变异概率0.05 */
genA=maxgen;
}
void initpop() /* 随机初始化种群 */
{
int j, j1, k, stop;
unsigned mask = 1;
for(j = 0; j < popsize; j++)
{
for(k = 0; k < chromsize; k++)
{
oldpop[subpop][j].chrom[k] = 0;
if(k == (chromsize-1))
stop = lchrom - (k*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
for(j1 = 1; j1 <= stop; j1++)
{
oldpop[subpop][j].chrom[k] = oldpop[subpop][j].chrom[k]<<1;
if(flip(randomseed))
oldpop[subpop][j].chrom[k] = oldpop[subpop][j].chrom[k]|mask;
}
}
oldpop[subpop][j].parent[0] = 0; /* 初始父个体信息 */
oldpop[subpop][j].parent[1] = 0;
oldpop[subpop][0].parentA[0]= 0;
oldpop[subpop][0].parentA[1]= 0;
oldpop[subpop][j].xsite = 0;
oldpop[subpop][0].xsiteA= 0;
objfunc(&(oldpop[subpop][j])); /* 计算初始适应度*/
}
if(subpop==0)
{
maxA = oldpop[0][0].fitness;
minA = oldpop[0][0].fitness;
}
}
void initreport() /* 初始参数输出 */
{
void skip();
skip(outfp,1);
fprintf(outfp," 基本遗传算法参数\n");
fprintf(outfp," -------------------------------------------------\n");
fprintf(outfp," 子种群数(subpopnum) = %d\n",subpopnum);
fprintf(outfp," 种群大小(popsize) = %d\n",popsize);
fprintf(outfp," 染色体长度(lchrom) = %d\n",lchrom);
fprintf(outfp," 最大进化代数(maxgen) = %d\n",maxgen);
fprintf(outfp," 交叉概率(pcross) = %f\n",pcross);
fprintf(outfp," 变异概率(pmutation) = %f\n",pmutation);
fprintf(outfp," -------------------------------------------------\n");
skip(outfp,1);
fflush(outfp);
}
void generation() /* 低层交叉变异 */
{
int mate1, mate2, jcross, j = 0;
/* 每代运算前进行预选 */
preselect();
/* 选择, 交叉, 变异 */
do
{
/* 挑选交叉配对 */
mate1 = select();
mate2 = select();
/* 交叉和变异 */
jcross = crossover(oldpop[subpop][mate1].chrom, oldpop[subpop][mate2].chrom, newpop[subpop][j].chrom, newpop[subpop][j+1].chrom);
mutation(newpop[subpop][j].chrom);
mutation(newpop[subpop][j+1].chrom);
/* 解码, 计算适应度 */
objfunc(&(newpop[subpop][j]));
/*记录亲子关系和交叉位置 */
newpop[subpop][j].parent[0] = mate1+1;
newpop[subpop][j].xsite = jcross;
newpop[subpop][j].parent[1] = mate2+1;
objfunc(&(newpop[subpop][j+1]));
newpop[subpop][j+1].parent[0] = mate1+1;
newpop[subpop][j+1].xsite = jcross;
newpop[subpop][j+1].parent[1] = mate2+1;
j = j + 2;
}
while(j < (popsize-1));
}
void CMTransA() /* 高层交叉变异 */
{
int mateA1, mateA2, jcrossA = 0, k, h, m, j1, j=0;
unsigned mask = 1;
int stop;
preselectA();
do
{
/*//////////// 高层交叉 ///////////////*/
mateA1 = selectA();
mateA2 = selectA();
if(flip(pcrossA))
{
jcrossA = (int)rnd(1 ,(popsize - 1));
ncrossA++;
for(m = jcrossA; m < popsize; m++)
{
for(k=0;k< chromsize; k++)
{
oldpop[mateA1][m].chrom[k] = newpop[j+1][m].chrom[k];
oldpop[mateA2][m].chrom[k] = newpop[j][m].chrom[k];
}
}
for(m = 0; m < jcrossA; m++)
{
for(k=0;k< chromsize; k++)
{
oldpop[mateA1][m].chrom[k] = newpop[j][m].chrom[k];
oldpop[mateA2][m].chrom[k] = newpop[j+1][m].chrom[k];
}
}
}
else
{
for(m = 0; m< popsize; m++)
{
for(k=0;k<chromsize;k++)
{
oldpop[mateA1][m].chrom[k] = newpop[j][m].chrom[k];
oldpop[mateA2][m].chrom[k] = newpop[j+1][m].chrom[k];
}
}
jcrossA=0;
}
/*//////////// 高层变异 ////////////////*/
if(flip(pmutationA))
{
nmutationA++;
for(h = 0; h < chromsize; h++)
{
newpop[j][m].chrom[h] = 0;
if(h == (chromsize-1))
stop = lchrom - (h*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
for(j1 = 1; j1 <= stop; j1++)
{
newpop[j][m].chrom[h] = newpop[j][m].chrom[h]<<1;
if(flip(0.5))
newpop[j][m].chrom[h] = newpop[j][m].chrom[h]|mask;
}
}
}
if(flip(pmutation))
{
nmutationA++;
for(h = 0; h < chromsize; h++)
{
newpop[j+1][m].chrom[h] = 0;
if(h == (chromsize-1))
stop = lchrom - (h*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
for(j1 = 1; j1 <= stop; j1++)
{
newpop[j+1][m].chrom[h] = newpop[j+1][m].chrom[h]<<1;
if(flip(0.5))
newpop[j+1][m].chrom[h] = newpop[j+1][m].chrom[h]|mask;
}
}
}
/* 解码, 计算适应度 */
for(k = 0; k < popsize; k++)
objfunc(&(newpop[j][k]));
for(k = 0; k < popsize; k++)
objfunc(&(newpop[j+1][k]));
newpop[j+1][0].parentA[0] = mateA1+1;
newpop[j+1][0].xsiteA = jcrossA;
newpop[j+1][0].parentA[1] = mateA2+1;
j = j + 2;
}
while(j<(subpopnum-1));
}
void initmalloc() /*为全局数据变量分配空间 */
{
unsigned nbytes;
char *malloc();
int i,j;
/* 分配给当前代和新一代种群内存空间 */
if((A = (double *) malloc(subpopnum*sizeof(double))) == NULL)
nomemory("A");
nbytes = popsize*sizeof(struct individual);
if((oldpop = (struct individual **) malloc(subpopnum*4)) == NULL)
nomemory("oldpop");
for(j=0; j<subpopnum;j++)
{
if((oldpop[j] = (struct individual *) malloc(nbytes)) == NULL)
nomemory("oldpop[j]");
}
if((newpop = (struct individual **) malloc(subpopnum*4)) == NULL)
nomemory("newpop");
for(j=0; j<subpopnum;j++)
{
if((newpop[j] = (struct individual *) malloc(nbytes)) == NULL)
nomemory("newpop[j]");
}
/* 分配给染色体内存空间 */
nbytes = chromsize*sizeof(unsigned);
for(j = 0; j < popsize; j++)
{
for(i=0;i<subpopnum;i++)
{
if((oldpop[i][j].chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("oldpop[i] chromosomes");
if((newpop[i][j].chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("newpop[i] chromosomes");
}
}
if((bestfit.chrom = (unsigned *) malloc(nbytes)) == NULL)
nomemory("bestfit chromosome");
if((bestfit.chromA = (unsigned *) malloc(nbytes)) == NULL)
nomemory("bestfit chromosomeA");
}
void freeall() /* 释放内存空间 */
{
int i,j;
for(i = 0; i < popsize; i++)
{
for(j=0;j<subpopnum;j++)
{
free(oldpop[j][i].chrom);
free(newpop[j][i].chrom);
}
}
free(A);
for(j=0;j<subpopnum;j++)
free(oldpop[j]);
free(oldpop);
for(j=0;j<subpopnum;j++)
free(newpop[j]);
free(newpop);
free(bestfit.chrom);
free(bestfit.chromA);
}
void nomemory(string) /* 内存不足,退出*/
char *string;
{
fprintf(outfp,"malloc: out of memory making %s!!\n",string);
exit(-1);
}
void reportA()
{
void skip();
int i,j,s;
fprintf(outfp,"第1次高层交叉变异统计报告\n");
repchar(outfp,"-",80);
skip(outfp,1);
for(s=0;s<subpopnum-1;s+=2)
{
fprintf(outfp, " 第%d子种群 ", s+1);
repchar(outfp, " ",lchrom-10);
fprintf(outfp, " 适应度值 ");
repchar(outfp, " ",2);
fprintf(outfp, " 第%d子种群 ", s+2);
repchar(outfp, " ",lchrom-6);
fprintf(outfp, " 适应度值 ");
fprintf(outfp, " 父代子群:");
fprintf(outfp, "(%2d,%2d)", newpop[s+1][0].parentA[0],newpop[s+1][0].parentA[1]);
skip(outfp,1);
for(i=0;i<popsize-1;i++)
{
fprintf(outfp, "%2d) ",i+1);
writechrom((&newpop[s][i])->chrom);
repchar(outfp, " ",2);
fprintf(outfp, " %f " ,newpop[s][i].fitness);
repchar(outfp, " ",5);
fprintf(outfp, "%2d) ",i+1);
writechrom((&newpop[s][i+1])->chrom);
repchar(outfp, " ",2);
fprintf(outfp, " %f " ,newpop[s][i+1].fitness);
skip(outfp,1);
}
repchar(outfp,"-",80);
skip(outfp,1);
fprintf(outfp, "高层交叉次数: %d , 高层变异次数: %d ",ncrossA,nmutationA);
skip(outfp,1);
}
fprintf(outfp," 迄今发现最佳个体 => 所在分层: %d 所在子群: %d 所在代数: %d ", runA,bestfit.subpopulation , genA);
fprintf(outfp," 适应度:%f 染色体: ", maxA);
writechrom((&bestfit)->chromA);
fprintf(outfp," 对应的变量值: %f", varibleA);
skip(outfp,1);
fprintf(outfp," 迄今发现最小适应度 => %f ",minA);
skip(outfp,1);
repchar(outfp,"-",80);
skip(outfp,1);
}
void report() /* 输出种群统计结果 */
{
void repchar(), skip();
void writepop(), writestats();
repchar(outfp,"-",80);
skip(outfp,1);
if(printstrings == 1)
{
repchar(outfp," ",((80-17)/2));
fprintf(outfp,"第%d子种群模拟计算统计报告 \n",(subpop+1));
fprintf(outfp, "世代数 %3d", gen);
repchar(outfp," ",(80-28));
fprintf(outfp, "世代数 %3d\n", (gen+1));
fprintf(outfp,"个体 染色体编码");
repchar(outfp," ",lchrom-5);
fprintf(outfp,"适应度 父个体 交叉位置 ");
fprintf(outfp,"染色体编码 ");
repchar(outfp," ",lchrom-5);
fprintf(outfp,"适应度\n");
repchar(outfp,"-",80);
skip(outfp,1);
writepop(outfp);
repchar(outfp,"-",80);
skip(outfp,1);
}
fprintf(outfp," 第 %d 代统计: \n",gen);
fprintf(outfp," 总交叉操作次数 = %d, 总变异操作数 = %d\n",ncross,nmutation);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -