⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 block.c

📁 网络MPEG4IP流媒体开发源代码
💻 C
📖 第 1 页 / 共 5 页
字号:
    break;  case QUANT_CHROMA_DC:    quant_set=QP_SCALE_CR[img->qp];    idx=0;    no_coeff=4;    break;  case QUANT_CHROMA_AC:    quant_set=QP_SCALE_CR[img->qp];    idx=2;    no_coeff=15;    break;  default:    error("rd_quant: unsupported scan_type", 600);    break;  }  dbl_coeff_ctr=0;  for (coeff_ctr=0;coeff_ctr < no_coeff ;coeff_ctr++)  {    k0=coeff[coeff_ctr];    k1=abs(k0);    if (dbl_coeff_ctr < MAX_TWO_LEVEL_COEFF)  // limit the number of 'twin' levels    {      level0 = (k0*JQ[quant_set][0])/J20;      level1 = (k1*JQ[quant_set][0]+JQ4)/J20; // make positive summation      level1 = sign(level1,k0);// set back sign on level    }    else    {      level0 = (k1*JQ[quant_set][0]+qp_const)/J20;      level0 = sign(level0,k0);      level1 = level0;    }    if (level0 != level1)    {      dbl_coeff = TRUE;     // decision is still open      dbl_coeff_ctr++;      // count number of coefficients with 2 possible levels    }    else      dbl_coeff = FALSE;    // level is decided    snr0 = (12+intra_add)*level0*(64*level0 - (JQ[quant_set][0]*coeff[coeff_ctr])/J13); // find SNR improvement    level_arr[coeff_ctr][MTLC_POW]=0; // indicates that all coefficients are decided    for (k=0; k< MTLC_POW; k++)    {      level_arr[coeff_ctr][k]=level0;      snr_arr[coeff_ctr][k]=snr0;    }    if (dbl_coeff)    {      snr1 = (12+intra_add)*level1*(64*level1 - (JQ[quant_set][0]*coeff[coeff_ctr])/J13);      ilev= (int)pow(2,dbl_coeff_ctr-1);      for (k1=ilev; k1<MTLC_POW; k1+=ilev*2)      {        for (k2=k1; k2<k1+ilev; k2++)        {          level_arr[coeff_ctr][k2]=level1;          snr_arr[coeff_ctr][k2]=snr1;        }      }    }  }  rd_best=0;  best_coeff_comb= MTLC_POW;      // initial setting, used if no double decision coefficients  for (k=0; k < pow(2,dbl_coeff_ctr);k++) // go through all combinations  {    rd_curr=0;    run=-1;    for (coeff_ctr=0;coeff_ctr < no_coeff;coeff_ctr++)    {      run++;      level=min(16,absm(level_arr[coeff_ctr][k]));      if (level != 0)      {        rd_curr += 64*COEFF_BIT_COST[idx][run][level-1]+snr_arr[coeff_ctr][k];        run = -1;      }    }    if (rd_curr < rd_best)    {      rd_best=rd_curr;      best_coeff_comb=k;    }  }  for (coeff_ctr=0;coeff_ctr < no_coeff ;coeff_ctr++)    coeff[coeff_ctr]=level_arr[coeff_ctr][best_coeff_comb];  return;}/*! ************************************************************************ * \brief *    The routine performs transform,quantization,inverse transform, adds the diff. *    to the prediction and writes the result to the decoded luma frame. Includes the *    RD constrained quantization also. * * \para Input: *    block_x,block_y: Block position inside a macro block (0,4,8,12). * * \para Output: *    nonzero: 0 if no levels are nonzero.  1 if there are nonzero levels.              \n *    coeff_cost: Counter for nonzero coefficients, used to discard expencive levels. * *************************************************************************/#ifndef NO_RDQUANTint dct_luma_sp(int block_x,int block_y,int *coeff_cost){  int sign(int a,int b);  int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr,scan_loop_ctr;  int pos_x,pos_y,quant_set,level,scan_pos,run;  int nonzero;  int idx;  int scan_mode;  int loop_rep;  int predicted_block[BLOCK_SIZE][BLOCK_SIZE],alpha,quant_set1,Fq1q2;  int coeff[16],coeff2[16];  pos_x=block_x/BLOCK_SIZE;  pos_y=block_y/BLOCK_SIZE;  //  Horizontal transform  for (j=0; j< BLOCK_SIZE; j++)    for (i=0; i< BLOCK_SIZE; i++)    {      img->m7[i][j]+=img->mpr[i+block_x][j+block_y];      predicted_block[i][j]=img->mpr[i+block_x][j+block_y];    }  for (j=0; j < BLOCK_SIZE; j++)  {    for (i=0; i < 2; i++)    {      i1=3-i;      m5[i]=img->m7[i][j]+img->m7[i1][j];      m5[i1]=img->m7[i][j]-img->m7[i1][j];    }    img->m7[0][j]=(m5[0]+m5[1])*13;    img->m7[2][j]=(m5[0]-m5[1])*13;    img->m7[1][j]=m5[3]*17+m5[2]*7;    img->m7[3][j]=m5[3]*7-m5[2]*17;  }  //  Vertival transform  for (i=0; i < BLOCK_SIZE; i++)  {    for (j=0; j < 2; j++)    {      j1=3-j;      m5[j]=img->m7[i][j]+img->m7[i][j1];      m5[j1]=img->m7[i][j]-img->m7[i][j1];    }    img->m7[i][0]=(m5[0]+m5[1])*13;    img->m7[i][2]=(m5[0]-m5[1])*13;    img->m7[i][1]=m5[3]*17+m5[2]*7;    img->m7[i][3]=m5[3]*7-m5[2]*17;  }  for (j=0; j < BLOCK_SIZE; j++)  {    for (i=0; i < 2; i++)    {      i1=3-i;      m5[i]=predicted_block[i][j]+predicted_block[i1][j];      m5[i1]=predicted_block[i][j]-predicted_block[i1][j];    }    predicted_block[0][j]=(m5[0]+m5[1])*13;    predicted_block[2][j]=(m5[0]-m5[1])*13;    predicted_block[1][j]=m5[3]*17+m5[2]*7;    predicted_block[3][j]=m5[3]*7-m5[2]*17;  }  //  Vertival transform  for (i=0; i < BLOCK_SIZE; i++)  {    for (j=0; j < 2; j++)    {      j1=3-j;      m5[j]=predicted_block[i][j]+predicted_block[i][j1];      m5[j1]=predicted_block[i][j]-predicted_block[i][j1];    }    predicted_block[i][0]=(m5[0]+m5[1])*13;    predicted_block[i][2]=(m5[0]-m5[1])*13;    predicted_block[i][1]=m5[3]*17+m5[2]*7;    predicted_block[i][3]=m5[3]*7-m5[2]*17;  }  // Quant  quant_set=img->qp;  quant_set1=img->qpsp;  alpha=(JQQ1+JQ[quant_set1][0]/2)/JQ[quant_set1][0];  Fq1q2=(JQQ1*JQ[quant_set1][0]+JQ[quant_set][0]/2)/JQ[quant_set][0];  nonzero=FALSE;    scan_mode=SINGLE_SCAN;    loop_rep=1;    idx=0;  for(scan_loop_ctr=0;scan_loop_ctr<loop_rep;scan_loop_ctr++) // 2 times if double scan, 1 normal scan  {    for (coeff_ctr=0;coeff_ctr < 16/loop_rep;coeff_ctr++)     // 8 times if double scan, 16 normal scan    {      if (scan_mode==DOUBLE_SCAN)      {        i=DBL_SCAN[coeff_ctr][0][scan_loop_ctr];        j=DBL_SCAN[coeff_ctr][1][scan_loop_ctr];      }      else      {        i=SNGL_SCAN[coeff_ctr][0];        j=SNGL_SCAN[coeff_ctr][1];      }      coeff[coeff_ctr]=img->m7[i][j];      coeff2[coeff_ctr]=(img->m7[i][j]-sign(((abs (predicted_block[i][j]) * JQ[quant_set1][0] +JQQ2) / JQQ1),predicted_block[i][j])*alpha);    }    rd_quant(QUANT_LUMA_SNG,coeff2);    run=-1;    scan_pos=scan_loop_ctr*9;   // for double scan; set first or second scan posision    for (coeff_ctr=0; coeff_ctr<16/loop_rep; coeff_ctr++)    {      if (scan_mode==DOUBLE_SCAN)      {        i=DBL_SCAN[coeff_ctr][0][scan_loop_ctr];        j=DBL_SCAN[coeff_ctr][1][scan_loop_ctr];      }      else      {        i=SNGL_SCAN[coeff_ctr][0];        j=SNGL_SCAN[coeff_ctr][1];      }      run++;      ilev=0;      level= absm(coeff2[coeff_ctr]);      if (level != 0)      {        nonzero=TRUE;        if (level > 1)          *coeff_cost += MAX_VALUE;                // set high cost, shall not be discarded        else          *coeff_cost += COEFF_COST[run];        img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=sign(level,coeff2[coeff_ctr]);        img->cof[pos_x][pos_y][scan_pos][1][scan_mode]=run;        ++scan_pos;        run=-1;                     // reset zero level counter        ilev=level;      }      ilev=coeff2[coeff_ctr]*Fq1q2+predicted_block[i][j]*JQ[quant_set1][0];      img->m7[i][j]=sign((abs(ilev)+JQQ2)/ JQQ1,ilev)*JQ[quant_set1][1];    }    img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=0;  // end of block  }  //     IDCT.  //     horizontal  for (j=0; j < BLOCK_SIZE; j++)  {    for (i=0; i < BLOCK_SIZE; i++)    {      m5[i]=img->m7[i][j];    }    m6[0]=(m5[0]+m5[2])*13;    m6[1]=(m5[0]-m5[2])*13;    m6[2]=m5[1]*7-m5[3]*17;    m6[3]=m5[1]*17+m5[3]*7;    for (i=0; i < 2; i++)    {      i1=3-i;      img->m7[i][j]=m6[i]+m6[i1];      img->m7[i1][j]=m6[i]-m6[i1];    }  }  //  vertical  for (i=0; i < BLOCK_SIZE; i++)  {    for (j=0; j < BLOCK_SIZE; j++)    {      m5[j]=img->m7[i][j];    }    m6[0]=(m5[0]+m5[2])*13;    m6[1]=(m5[0]-m5[2])*13;    m6[2]=m5[1]*7-m5[3]*17;    m6[3]=m5[1]*17+m5[3]*7;    for (j=0; j < 2; j++)    {      j1=3-j;      img->m7[i][j] =min(255,max(0,(m6[j]+m6[j1]+JQQ2)/JQQ1));      img->m7[i][j1]=min(255,max(0,(m6[j]-m6[j1]+JQQ2)/JQQ1));    }  }  //  Decoded block moved to frame memory  for (j=0; j < BLOCK_SIZE; j++)    for (i=0; i < BLOCK_SIZE; i++)      imgY[img->pix_y+block_y+j][img->pix_x+block_x+i]=img->m7[i][j];  return nonzero;}#endif#ifdef NO_RDQUANTint dct_luma_sp(int block_x,int block_y,int *coeff_cost){  int sign(int a,int b);  int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr,scan_loop_ctr;  int qp_const,pos_x,pos_y,quant_set,level,scan_pos,run;  int nonzero;  int idx;  int scan_mode;  int loop_rep;  int predicted_block[BLOCK_SIZE][BLOCK_SIZE],alpha,quant_set1,Fq1q2,c_err;  qp_const=JQQ4;    // inter  pos_x=block_x/BLOCK_SIZE;  pos_y=block_y/BLOCK_SIZE;  //  Horizontal transform  for (j=0; j< BLOCK_SIZE; j++)    for (i=0; i< BLOCK_SIZE; i++)    {      img->m7[i][j]+=img->mpr[i+block_x][j+block_y];      predicted_block[i][j]=img->mpr[i+block_x][j+block_y];    }  for (j=0; j < BLOCK_SIZE; j++)  {    for (i=0; i < 2; i++)    {      i1=3-i;      m5[i]=img->m7[i][j]+img->m7[i1][j];      m5[i1]=img->m7[i][j]-img->m7[i1][j];    }    img->m7[0][j]=(m5[0]+m5[1])*13;    img->m7[2][j]=(m5[0]-m5[1])*13;    img->m7[1][j]=m5[3]*17+m5[2]*7;    img->m7[3][j]=m5[3]*7-m5[2]*17;  }  //  Vertival transform  for (i=0; i < BLOCK_SIZE; i++)  {    for (j=0; j < 2; j++)    {      j1=3-j;      m5[j]=img->m7[i][j]+img->m7[i][j1];      m5[j1]=img->m7[i][j]-img->m7[i][j1];    }    img->m7[i][0]=(m5[0]+m5[1])*13;    img->m7[i][2]=(m5[0]-m5[1])*13;    img->m7[i][1]=m5[3]*17+m5[2]*7;    img->m7[i][3]=m5[3]*7-m5[2]*17;  }  for (j=0; j < BLOCK_SIZE; j++)  {    for (i=0; i < 2; i++)    {      i1=3-i;      m5[i]=predicted_block[i][j]+predicted_block[i1][j];      m5[i1]=predicted_block[i][j]-predicted_block[i1][j];    }    predicted_block[0][j]=(m5[0]+m5[1])*13;    predicted_block[2][j]=(m5[0]-m5[1])*13;    predicted_block[1][j]=m5[3]*17+m5[2]*7;    predicted_block[3][j]=m5[3]*7-m5[2]*17;  }  //  Vertival transform  for (i=0; i < BLOCK_SIZE; i++)  {    for (j=0; j < 2; j++)    {      j1=3-j;      m5[j]=predicted_block[i][j]+predicted_block[i][j1];      m5[j1]=predicted_block[i][j]-predicted_block[i][j1];    }    predicted_block[i][0]=(m5[0]+m5[1])*13;    predicted_block[i][2]=(m5[0]-m5[1])*13;    predicted_block[i][1]=m5[3]*17+m5[2]*7;    predicted_block[i][3]=m5[3]*7-m5[2]*17;  }  // Quant  quant_set=img->qp;  quant_set1=img->qpsp;  alpha=(JQQ1+JQ[quant_set1][0]/2)/JQ[quant_set1][0];  Fq1q2=(JQQ1*JQ[quant_set1][0]+JQ[quant_set][0]/2)/JQ[quant_set][0];  nonzero=FALSE;    scan_mode=SINGLE_SCAN;    loop_rep=1;    idx=0;  for(scan_loop_ctr=0;scan_loop_ctr<loop_rep;scan_loop_ctr++) // 2 times if double scan, 1 normal scan  {  run=-1;  scan_pos=scan_loop_ctr*9;    for (coeff_ctr=0;coeff_ctr < 16/loop_rep;coeff_ctr++)     // 8 times if double scan, 16 normal scan    {      if (scan_mode==DOUBLE_SCAN)      {        i=DBL_SCAN[coeff_ctr][0][scan_loop_ctr];        j=DBL_SCAN[coeff_ctr][1][scan_loop_ctr];      }      else      {        i=SNGL_SCAN[coeff_ctr][0];        j=SNGL_SCAN[coeff_ctr][1];      }      run++;      ilev=0;      c_err=img->m7[i][j]-alpha*sign(((abs (predicted_block[i][j]) * JQ[quant_set1][0] +JQQ2) / JQQ1),predicted_block[i][j]);      level = (abs (c_err) * JQ[quant_set][0] +qp_const) / JQQ1;      if (level != 0)      {        nonzero=TRUE;        if (level > 1)          *coeff_cost += MAX_VALUE;                // set high cost, shall not be discarded        else          *coeff_cost += COEFF_COST[run];        img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=sign(level,c_err);        img->cof[pos_x][pos_y][scan_pos][1][scan_mode]=run;        ++scan_pos;        run=-1;                     // reset zero level counter        ilev=level;      }      ilev=sign(ilev,c_err)*Fq1q2+predicted_block[i][j]*JQ[quant_set1][0];      img->m7[i][j]=sign((abs(ilev)+JQQ2)/ JQQ1*JQ[quant_set1][1],ilev);    }    img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=0;  // end of block  }  //     IDCT.  //     horizontal  for (j=0; j < BLOCK_SIZE; j++)  {    for (i=0; i < BLOCK_SIZE; i++)    {      m5[i]=img->m7[i][j];    }    m6[0]=(m5[0]+m5[2])*13;    m6[1]=(m5[0]-m5[2])*13;    m6[2]=m5[1]*7-m5[3]*17;    m6[3]=m5[1]*17+m5[3]*7;    for (i=0; i < 2; i++)    {      i1=3-i;      img->m7[i][j]=m6[i]+m6[i1];      img->m7[i1][j]=m6[i]-m6[i1];    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -