📄 block.c
字号:
break; case QUANT_CHROMA_DC: quant_set=QP_SCALE_CR[img->qp]; idx=0; no_coeff=4; break; case QUANT_CHROMA_AC: quant_set=QP_SCALE_CR[img->qp]; idx=2; no_coeff=15; break; default: error("rd_quant: unsupported scan_type", 600); break; } dbl_coeff_ctr=0; for (coeff_ctr=0;coeff_ctr < no_coeff ;coeff_ctr++) { k0=coeff[coeff_ctr]; k1=abs(k0); if (dbl_coeff_ctr < MAX_TWO_LEVEL_COEFF) // limit the number of 'twin' levels { level0 = (k0*JQ[quant_set][0])/J20; level1 = (k1*JQ[quant_set][0]+JQ4)/J20; // make positive summation level1 = sign(level1,k0);// set back sign on level } else { level0 = (k1*JQ[quant_set][0]+qp_const)/J20; level0 = sign(level0,k0); level1 = level0; } if (level0 != level1) { dbl_coeff = TRUE; // decision is still open dbl_coeff_ctr++; // count number of coefficients with 2 possible levels } else dbl_coeff = FALSE; // level is decided snr0 = (12+intra_add)*level0*(64*level0 - (JQ[quant_set][0]*coeff[coeff_ctr])/J13); // find SNR improvement level_arr[coeff_ctr][MTLC_POW]=0; // indicates that all coefficients are decided for (k=0; k< MTLC_POW; k++) { level_arr[coeff_ctr][k]=level0; snr_arr[coeff_ctr][k]=snr0; } if (dbl_coeff) { snr1 = (12+intra_add)*level1*(64*level1 - (JQ[quant_set][0]*coeff[coeff_ctr])/J13); ilev= (int)pow(2,dbl_coeff_ctr-1); for (k1=ilev; k1<MTLC_POW; k1+=ilev*2) { for (k2=k1; k2<k1+ilev; k2++) { level_arr[coeff_ctr][k2]=level1; snr_arr[coeff_ctr][k2]=snr1; } } } } rd_best=0; best_coeff_comb= MTLC_POW; // initial setting, used if no double decision coefficients for (k=0; k < pow(2,dbl_coeff_ctr);k++) // go through all combinations { rd_curr=0; run=-1; for (coeff_ctr=0;coeff_ctr < no_coeff;coeff_ctr++) { run++; level=min(16,absm(level_arr[coeff_ctr][k])); if (level != 0) { rd_curr += 64*COEFF_BIT_COST[idx][run][level-1]+snr_arr[coeff_ctr][k]; run = -1; } } if (rd_curr < rd_best) { rd_best=rd_curr; best_coeff_comb=k; } } for (coeff_ctr=0;coeff_ctr < no_coeff ;coeff_ctr++) coeff[coeff_ctr]=level_arr[coeff_ctr][best_coeff_comb]; return;}/*! ************************************************************************ * \brief * The routine performs transform,quantization,inverse transform, adds the diff. * to the prediction and writes the result to the decoded luma frame. Includes the * RD constrained quantization also. * * \para Input: * block_x,block_y: Block position inside a macro block (0,4,8,12). * * \para Output: * nonzero: 0 if no levels are nonzero. 1 if there are nonzero levels. \n * coeff_cost: Counter for nonzero coefficients, used to discard expencive levels. * *************************************************************************/#ifndef NO_RDQUANTint dct_luma_sp(int block_x,int block_y,int *coeff_cost){ int sign(int a,int b); int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr,scan_loop_ctr; int pos_x,pos_y,quant_set,level,scan_pos,run; int nonzero; int idx; int scan_mode; int loop_rep; int predicted_block[BLOCK_SIZE][BLOCK_SIZE],alpha,quant_set1,Fq1q2; int coeff[16],coeff2[16]; pos_x=block_x/BLOCK_SIZE; pos_y=block_y/BLOCK_SIZE; // Horizontal transform for (j=0; j< BLOCK_SIZE; j++) for (i=0; i< BLOCK_SIZE; i++) { img->m7[i][j]+=img->mpr[i+block_x][j+block_y]; predicted_block[i][j]=img->mpr[i+block_x][j+block_y]; } for (j=0; j < BLOCK_SIZE; j++) { for (i=0; i < 2; i++) { i1=3-i; m5[i]=img->m7[i][j]+img->m7[i1][j]; m5[i1]=img->m7[i][j]-img->m7[i1][j]; } img->m7[0][j]=(m5[0]+m5[1])*13; img->m7[2][j]=(m5[0]-m5[1])*13; img->m7[1][j]=m5[3]*17+m5[2]*7; img->m7[3][j]=m5[3]*7-m5[2]*17; } // Vertival transform for (i=0; i < BLOCK_SIZE; i++) { for (j=0; j < 2; j++) { j1=3-j; m5[j]=img->m7[i][j]+img->m7[i][j1]; m5[j1]=img->m7[i][j]-img->m7[i][j1]; } img->m7[i][0]=(m5[0]+m5[1])*13; img->m7[i][2]=(m5[0]-m5[1])*13; img->m7[i][1]=m5[3]*17+m5[2]*7; img->m7[i][3]=m5[3]*7-m5[2]*17; } for (j=0; j < BLOCK_SIZE; j++) { for (i=0; i < 2; i++) { i1=3-i; m5[i]=predicted_block[i][j]+predicted_block[i1][j]; m5[i1]=predicted_block[i][j]-predicted_block[i1][j]; } predicted_block[0][j]=(m5[0]+m5[1])*13; predicted_block[2][j]=(m5[0]-m5[1])*13; predicted_block[1][j]=m5[3]*17+m5[2]*7; predicted_block[3][j]=m5[3]*7-m5[2]*17; } // Vertival transform for (i=0; i < BLOCK_SIZE; i++) { for (j=0; j < 2; j++) { j1=3-j; m5[j]=predicted_block[i][j]+predicted_block[i][j1]; m5[j1]=predicted_block[i][j]-predicted_block[i][j1]; } predicted_block[i][0]=(m5[0]+m5[1])*13; predicted_block[i][2]=(m5[0]-m5[1])*13; predicted_block[i][1]=m5[3]*17+m5[2]*7; predicted_block[i][3]=m5[3]*7-m5[2]*17; } // Quant quant_set=img->qp; quant_set1=img->qpsp; alpha=(JQQ1+JQ[quant_set1][0]/2)/JQ[quant_set1][0]; Fq1q2=(JQQ1*JQ[quant_set1][0]+JQ[quant_set][0]/2)/JQ[quant_set][0]; nonzero=FALSE; scan_mode=SINGLE_SCAN; loop_rep=1; idx=0; for(scan_loop_ctr=0;scan_loop_ctr<loop_rep;scan_loop_ctr++) // 2 times if double scan, 1 normal scan { for (coeff_ctr=0;coeff_ctr < 16/loop_rep;coeff_ctr++) // 8 times if double scan, 16 normal scan { if (scan_mode==DOUBLE_SCAN) { i=DBL_SCAN[coeff_ctr][0][scan_loop_ctr]; j=DBL_SCAN[coeff_ctr][1][scan_loop_ctr]; } else { i=SNGL_SCAN[coeff_ctr][0]; j=SNGL_SCAN[coeff_ctr][1]; } coeff[coeff_ctr]=img->m7[i][j]; coeff2[coeff_ctr]=(img->m7[i][j]-sign(((abs (predicted_block[i][j]) * JQ[quant_set1][0] +JQQ2) / JQQ1),predicted_block[i][j])*alpha); } rd_quant(QUANT_LUMA_SNG,coeff2); run=-1; scan_pos=scan_loop_ctr*9; // for double scan; set first or second scan posision for (coeff_ctr=0; coeff_ctr<16/loop_rep; coeff_ctr++) { if (scan_mode==DOUBLE_SCAN) { i=DBL_SCAN[coeff_ctr][0][scan_loop_ctr]; j=DBL_SCAN[coeff_ctr][1][scan_loop_ctr]; } else { i=SNGL_SCAN[coeff_ctr][0]; j=SNGL_SCAN[coeff_ctr][1]; } run++; ilev=0; level= absm(coeff2[coeff_ctr]); if (level != 0) { nonzero=TRUE; if (level > 1) *coeff_cost += MAX_VALUE; // set high cost, shall not be discarded else *coeff_cost += COEFF_COST[run]; img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=sign(level,coeff2[coeff_ctr]); img->cof[pos_x][pos_y][scan_pos][1][scan_mode]=run; ++scan_pos; run=-1; // reset zero level counter ilev=level; } ilev=coeff2[coeff_ctr]*Fq1q2+predicted_block[i][j]*JQ[quant_set1][0]; img->m7[i][j]=sign((abs(ilev)+JQQ2)/ JQQ1,ilev)*JQ[quant_set1][1]; } img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=0; // end of block } // IDCT. // horizontal for (j=0; j < BLOCK_SIZE; j++) { for (i=0; i < BLOCK_SIZE; i++) { m5[i]=img->m7[i][j]; } m6[0]=(m5[0]+m5[2])*13; m6[1]=(m5[0]-m5[2])*13; m6[2]=m5[1]*7-m5[3]*17; m6[3]=m5[1]*17+m5[3]*7; for (i=0; i < 2; i++) { i1=3-i; img->m7[i][j]=m6[i]+m6[i1]; img->m7[i1][j]=m6[i]-m6[i1]; } } // vertical for (i=0; i < BLOCK_SIZE; i++) { for (j=0; j < BLOCK_SIZE; j++) { m5[j]=img->m7[i][j]; } m6[0]=(m5[0]+m5[2])*13; m6[1]=(m5[0]-m5[2])*13; m6[2]=m5[1]*7-m5[3]*17; m6[3]=m5[1]*17+m5[3]*7; for (j=0; j < 2; j++) { j1=3-j; img->m7[i][j] =min(255,max(0,(m6[j]+m6[j1]+JQQ2)/JQQ1)); img->m7[i][j1]=min(255,max(0,(m6[j]-m6[j1]+JQQ2)/JQQ1)); } } // Decoded block moved to frame memory for (j=0; j < BLOCK_SIZE; j++) for (i=0; i < BLOCK_SIZE; i++) imgY[img->pix_y+block_y+j][img->pix_x+block_x+i]=img->m7[i][j]; return nonzero;}#endif#ifdef NO_RDQUANTint dct_luma_sp(int block_x,int block_y,int *coeff_cost){ int sign(int a,int b); int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr,scan_loop_ctr; int qp_const,pos_x,pos_y,quant_set,level,scan_pos,run; int nonzero; int idx; int scan_mode; int loop_rep; int predicted_block[BLOCK_SIZE][BLOCK_SIZE],alpha,quant_set1,Fq1q2,c_err; qp_const=JQQ4; // inter pos_x=block_x/BLOCK_SIZE; pos_y=block_y/BLOCK_SIZE; // Horizontal transform for (j=0; j< BLOCK_SIZE; j++) for (i=0; i< BLOCK_SIZE; i++) { img->m7[i][j]+=img->mpr[i+block_x][j+block_y]; predicted_block[i][j]=img->mpr[i+block_x][j+block_y]; } for (j=0; j < BLOCK_SIZE; j++) { for (i=0; i < 2; i++) { i1=3-i; m5[i]=img->m7[i][j]+img->m7[i1][j]; m5[i1]=img->m7[i][j]-img->m7[i1][j]; } img->m7[0][j]=(m5[0]+m5[1])*13; img->m7[2][j]=(m5[0]-m5[1])*13; img->m7[1][j]=m5[3]*17+m5[2]*7; img->m7[3][j]=m5[3]*7-m5[2]*17; } // Vertival transform for (i=0; i < BLOCK_SIZE; i++) { for (j=0; j < 2; j++) { j1=3-j; m5[j]=img->m7[i][j]+img->m7[i][j1]; m5[j1]=img->m7[i][j]-img->m7[i][j1]; } img->m7[i][0]=(m5[0]+m5[1])*13; img->m7[i][2]=(m5[0]-m5[1])*13; img->m7[i][1]=m5[3]*17+m5[2]*7; img->m7[i][3]=m5[3]*7-m5[2]*17; } for (j=0; j < BLOCK_SIZE; j++) { for (i=0; i < 2; i++) { i1=3-i; m5[i]=predicted_block[i][j]+predicted_block[i1][j]; m5[i1]=predicted_block[i][j]-predicted_block[i1][j]; } predicted_block[0][j]=(m5[0]+m5[1])*13; predicted_block[2][j]=(m5[0]-m5[1])*13; predicted_block[1][j]=m5[3]*17+m5[2]*7; predicted_block[3][j]=m5[3]*7-m5[2]*17; } // Vertival transform for (i=0; i < BLOCK_SIZE; i++) { for (j=0; j < 2; j++) { j1=3-j; m5[j]=predicted_block[i][j]+predicted_block[i][j1]; m5[j1]=predicted_block[i][j]-predicted_block[i][j1]; } predicted_block[i][0]=(m5[0]+m5[1])*13; predicted_block[i][2]=(m5[0]-m5[1])*13; predicted_block[i][1]=m5[3]*17+m5[2]*7; predicted_block[i][3]=m5[3]*7-m5[2]*17; } // Quant quant_set=img->qp; quant_set1=img->qpsp; alpha=(JQQ1+JQ[quant_set1][0]/2)/JQ[quant_set1][0]; Fq1q2=(JQQ1*JQ[quant_set1][0]+JQ[quant_set][0]/2)/JQ[quant_set][0]; nonzero=FALSE; scan_mode=SINGLE_SCAN; loop_rep=1; idx=0; for(scan_loop_ctr=0;scan_loop_ctr<loop_rep;scan_loop_ctr++) // 2 times if double scan, 1 normal scan { run=-1; scan_pos=scan_loop_ctr*9; for (coeff_ctr=0;coeff_ctr < 16/loop_rep;coeff_ctr++) // 8 times if double scan, 16 normal scan { if (scan_mode==DOUBLE_SCAN) { i=DBL_SCAN[coeff_ctr][0][scan_loop_ctr]; j=DBL_SCAN[coeff_ctr][1][scan_loop_ctr]; } else { i=SNGL_SCAN[coeff_ctr][0]; j=SNGL_SCAN[coeff_ctr][1]; } run++; ilev=0; c_err=img->m7[i][j]-alpha*sign(((abs (predicted_block[i][j]) * JQ[quant_set1][0] +JQQ2) / JQQ1),predicted_block[i][j]); level = (abs (c_err) * JQ[quant_set][0] +qp_const) / JQQ1; if (level != 0) { nonzero=TRUE; if (level > 1) *coeff_cost += MAX_VALUE; // set high cost, shall not be discarded else *coeff_cost += COEFF_COST[run]; img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=sign(level,c_err); img->cof[pos_x][pos_y][scan_pos][1][scan_mode]=run; ++scan_pos; run=-1; // reset zero level counter ilev=level; } ilev=sign(ilev,c_err)*Fq1q2+predicted_block[i][j]*JQ[quant_set1][0]; img->m7[i][j]=sign((abs(ilev)+JQQ2)/ JQQ1*JQ[quant_set1][1],ilev); } img->cof[pos_x][pos_y][scan_pos][0][scan_mode]=0; // end of block } // IDCT. // horizontal for (j=0; j < BLOCK_SIZE; j++) { for (i=0; i < BLOCK_SIZE; i++) { m5[i]=img->m7[i][j]; } m6[0]=(m5[0]+m5[2])*13; m6[1]=(m5[0]-m5[2])*13; m6[2]=m5[1]*7-m5[3]*17; m6[3]=m5[1]*17+m5[3]*7; for (i=0; i < 2; i++) { i1=3-i; img->m7[i][j]=m6[i]+m6[i1]; img->m7[i1][j]=m6[i]-m6[i1]; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -