📄 block.c
字号:
/************************************************************************* COPYRIGHT AND WARRANTY INFORMATION** Copyright 2001, International Telecommunications Union, Geneva** DISCLAIMER OF WARRANTY** These software programs are available to the user without any* license fee or royalty on an "as is" basis. The ITU disclaims* any and all warranties, whether express, implied, or* statutory, including any implied warranties of merchantability* or of fitness for a particular purpose. In no event shall the* contributor or the ITU be liable for any incidental, punitive, or* consequential damages of any kind whatsoever arising from the* use of these programs.** This disclaimer of warranty extends to the user of these programs* and user's customers, employees, agents, transferees, successors,* and assigns.** The ITU does not represent or warrant that the programs furnished* hereunder are free of infringement of any third-party patents.* Commercial implementations of ITU-T Recommendations, including* shareware, may be subject to royalty fees to patent holders.* Information regarding the ITU-T patent policy is available from* the ITU Web site at http://www.itu.int.** THIS IS NOT A GRANT OF PATENT RIGHTS - SEE THE ITU-T PATENT POLICY.*************************************************************************//*! ************************************************************************************* * \file block.c * * \brief * Process one block * * \author * Main contributors (see contributors.h for copyright, address and affiliation details) * - Inge Lille-Lang鴜 <inge.lille-langoy@telenor.com> * - Rickard Sjoberg <rickard.sjoberg@era.ericsson.se> * - Stephan Wenger <stewe@cs.tu-berlin.de> * - Jani Lainema <jani.lainema@nokia.com> * - Detlev Marpe <marpe@hhi.de> * - Thomas Wedi <wedi@tnt.uni-hannover.de> * - Ragip Kurceren <ragip.kurceren@nokia.com> ************************************************************************************* */#include "contributors.h"#include <math.h>#include <stdlib.h>#include <assert.h>#include "block.h"#include "refbuf.h"/*! ************************************************************************ * \brief * Make intra 4x4 prediction according to all 6 prediction modes. * The routine uses left and upper neighbouring points from * previous coded blocks to do this (if available). Notice that * inaccessible neighbouring points are signalled with a negative * value i the predmode array . * * \para Input: * Starting point of current 4x4 block image posision * * \para Output: * none ************************************************************************ */void intrapred_luma(int img_x,int img_y){ int i,j,s0=0,s1,s2,ia[7][3],s[4][2]; int block_available_up = (img->ipredmode[img_x/BLOCK_SIZE+1][img_y/BLOCK_SIZE] >=0); int block_available_left = (img->ipredmode[img_x/BLOCK_SIZE][img_y/BLOCK_SIZE+1] >=0); s1=0; s2=0; // make DC prediction for (i=0; i < BLOCK_SIZE; i++) { if (block_available_up) s1 += imgY[img_y-1][img_x+i]; // sum hor pix if (block_available_left) s2 += imgY[img_y+i][img_x-1]; // sum vert pix } if (block_available_up && block_available_left) s0=(s1+s2+4)/(2*BLOCK_SIZE); // no edge if (!block_available_up && block_available_left) s0=(s2+2)/BLOCK_SIZE; // upper edge if (block_available_up && !block_available_left) s0=(s1+2)/BLOCK_SIZE; // left edge if (!block_available_up && !block_available_left) s0=128; // top left corner, nothing to predict from for (i=0; i < BLOCK_SIZE; i++) { // vertical prediction if (block_available_up) s[i][0]=imgY[img_y-1][img_x+i]; // horizontal prediction if (block_available_left) s[i][1]=imgY[img_y+i][img_x-1]; } for (j=0; j < BLOCK_SIZE; j++) { for (i=0; i < BLOCK_SIZE; i++) { img->mprr[DC_PRED][i][j]=s0; // store DC prediction img->mprr[VERT_PRED][i][j]=s[j][0]; // store vertical prediction img->mprr[HOR_PRED][i][j]=s[i][1]; // store horizontal prediction } } // Prediction according to 'diagonal' modes if (block_available_up && block_available_left) { int A = imgY[img_y-1][img_x]; int B = imgY[img_y-1][img_x+1]; int C = imgY[img_y-1][img_x+2]; int D = imgY[img_y-1][img_x+3]; int E = imgY[img_y ][img_x-1]; int F = imgY[img_y+1][img_x-1]; int G = imgY[img_y+2][img_x-1]; int H = imgY[img_y+3][img_x-1]; int I = imgY[img_y-1][img_x-1]; ia[0][0]=(H+2*G+F+2)/4; ia[1][0]=(G+2*F+E+2)/4; ia[2][0]=(F+2*E+I+2)/4; ia[3][0]=(E+2*I+A+2)/4; ia[4][0]=(I+2*A+B+2)/4; ia[5][0]=(A+2*B+C+2)/4; ia[6][0]=(B+2*C+D+2)/4; for (i=0;i<4;i++) for (j=0;j<4;j++) img->mprr[DIAG_PRED_LR_45][i][j]=ia[j-i+3][0]; } if (block_available_up) { // Do prediction 1 int A = imgY[img_y-1][img_x+0]; int B = imgY[img_y-1][img_x+1]; int C = imgY[img_y-1][img_x+2]; int D = imgY[img_y-1][img_x+3]; img->mprr[DIAG_PRED_RL][0][0] = (A+B)/2; // a img->mprr[DIAG_PRED_RL][1][0] = B; // e img->mprr[DIAG_PRED_RL][0][1] = img->mprr[DIAG_PRED_RL][2][0] = (B+C)/2; // b i img->mprr[DIAG_PRED_RL][1][1] = img->mprr[DIAG_PRED_RL][3][0] = C; // f m img->mprr[DIAG_PRED_RL][0][2] = img->mprr[DIAG_PRED_RL][2][1] = (C+D)/2; // c j img->mprr[DIAG_PRED_RL][3][1] = img->mprr[DIAG_PRED_RL][1][2] = img->mprr[DIAG_PRED_RL][2][2] = img->mprr[DIAG_PRED_RL][3][2] = img->mprr[DIAG_PRED_RL][0][3] = img->mprr[DIAG_PRED_RL][1][3] = img->mprr[DIAG_PRED_RL][2][3] = img->mprr[DIAG_PRED_RL][3][3] = D; // d g h k l n o p } if (block_available_left) { // Do prediction 5 int E = imgY[img_y+0][img_x-1]; int F = imgY[img_y+1][img_x-1]; int G = imgY[img_y+2][img_x-1]; int H = imgY[img_y+3][img_x-1]; img->mprr[DIAG_PRED_LR][0][0] = (E+F)/2; // a img->mprr[DIAG_PRED_LR][0][1] = F; // b img->mprr[DIAG_PRED_LR][1][0] = img->mprr[DIAG_PRED_LR][0][2] = (F+G)/2; // e c img->mprr[DIAG_PRED_LR][1][1] = img->mprr[DIAG_PRED_LR][0][3] = G; // f d img->mprr[DIAG_PRED_LR][2][0] = img->mprr[DIAG_PRED_LR][1][2] = (G+H)/2; // i g img->mprr[DIAG_PRED_LR][1][3] = img->mprr[DIAG_PRED_LR][2][1] = img->mprr[DIAG_PRED_LR][2][2] = img->mprr[DIAG_PRED_LR][2][3] = img->mprr[DIAG_PRED_LR][3][0] = img->mprr[DIAG_PRED_LR][3][1] = img->mprr[DIAG_PRED_LR][3][2] = img->mprr[DIAG_PRED_LR][3][3] = H; }}/*! ************************************************************************ * \brief * 16x16 based luma prediction * * \para Input: * Image parameters * * \para Output: * none ************************************************************************ */void intrapred_luma_2(){ int s0=0,s1,s2; int i,j; int s[16][2]; int ih,iv; int ib,ic,iaa; int mb_nr = img->current_mb_nr; int mb_width = img->width/16; int mb_available_up = (img->mb_y == 0) ? 0 : (img->slice_numbers[mb_nr] == img->slice_numbers[mb_nr-mb_width]); int mb_available_left = (img->mb_x == 0) ? 0 : (img->slice_numbers[mb_nr] == img->slice_numbers[mb_nr-1]); if(input->UseConstrainedIntraPred) { if (mb_available_up && (img->intra_mb[mb_nr-mb_width] ==0)) mb_available_up = 0; if (mb_available_left && (img->intra_mb[mb_nr-1] ==0)) mb_available_left = 0; } s1=s2=0; // make DC prediction for (i=0; i < MB_BLOCK_SIZE; i++) { if (mb_available_up) s1 += imgY[img->pix_y-1][img->pix_x+i]; // sum hor pix if (mb_available_left) s2 += imgY[img->pix_y+i][img->pix_x-1]; // sum vert pix } if (mb_available_up && mb_available_left) s0=(s1+s2+16)/(2*MB_BLOCK_SIZE); // no edge if (!mb_available_up && mb_available_left) s0=(s2+8)/MB_BLOCK_SIZE; // upper edge if (mb_available_up && !mb_available_left) s0=(s1+8)/MB_BLOCK_SIZE; // left edge if (!mb_available_up && !mb_available_left) s0=128; // top left corner, nothing to predict from for (i=0; i < MB_BLOCK_SIZE; i++) { // vertical prediction if (mb_available_up) s[i][0]=imgY[img->pix_y-1][img->pix_x+i]; // horizontal prediction if (mb_available_left) s[i][1]=imgY[img->pix_y+i][img->pix_x-1]; } for (j=0; j < MB_BLOCK_SIZE; j++) { for (i=0; i < MB_BLOCK_SIZE; i++) { img->mprr_2[VERT_PRED_16][j][i]=s[i][0]; // store vertical prediction img->mprr_2[HOR_PRED_16 ][j][i]=s[j][1]; // store horizontal prediction img->mprr_2[DC_PRED_16 ][j][i]=s0; // store DC prediction } } if (!mb_available_up || !mb_available_left) // edge return; // 16 bit integer plan pred ih=0; iv=0; for (i=1;i<9;i++) { ih += i*(imgY[img->pix_y-1][img->pix_x+7+i] - imgY[img->pix_y-1][img->pix_x+7-i]); iv += i*(imgY[img->pix_y+7+i][img->pix_x-1] - imgY[img->pix_y+7-i][img->pix_x-1]); } ib=5*(ih/4)/16; ic=5*(iv/4)/16; iaa=16*(imgY[img->pix_y-1][img->pix_x+15]+imgY[img->pix_y+15][img->pix_x-1]); for (j=0;j< MB_BLOCK_SIZE;j++) { for (i=0;i< MB_BLOCK_SIZE;i++) { img->mprr_2[PLANE_16][j][i]=max(0,min(255,(iaa+(i-7)*ib +(j-7)*ic + 16)/32));/* store plane prediction */ } }}/*! ************************************************************************ * \brief * For new intra pred routines * * \para Input: * Image par, 16x16 based intra mode * * \para Output: * none ************************************************************************ */void dct_luma2(int new_intra_mode){#ifndef NO_RDQUANT int jq0;#endif#ifdef NO_RDQUANT int qp_const;#endif int i,j; int ii,jj; int i1,j1; int M1[16][16]; int M4[4][4]; int M5[4],M6[4]; int M0[4][4][4][4];#ifndef NO_RDQUANT int coeff[16];#endif int quant_set,run,scan_pos,coeff_ctr,level;#ifndef NO_RDQUANT jq0=JQQ3;#endif#ifdef NO_RDQUANT qp_const = JQQ3;#endif for (j=0;j<16;j++) { for (i=0;i<16;i++) { M1[i][j]=imgY_org[img->pix_y+j][img->pix_x+i]-img->mprr_2[new_intra_mode][j][i]; M0[i%4][i/4][j%4][j/4]=M1[i][j]; } } for (jj=0;jj<4;jj++) { for (ii=0;ii<4;ii++) { for (j=0;j<4;j++) { for (i=0;i<2;i++) { i1=3-i; M5[i]= M0[i][ii][j][jj]+M0[i1][ii][j][jj]; M5[i1]= M0[i][ii][j][jj]-M0[i1][ii][j][jj]; } M0[0][ii][j][jj]=(M5[0]+M5[1])*13; M0[2][ii][j][jj]=(M5[0]-M5[1])*13; M0[1][ii][j][jj]=M5[3]*17+M5[2]*7; M0[3][ii][j][jj]=M5[3]*7-M5[2]*17; } // vertical for (i=0;i<4;i++) { for (j=0;j<2;j++) { j1=3-j; M5[j] = M0[i][ii][j][jj]+M0[i][ii][j1][jj]; M5[j1]= M0[i][ii][j][jj]-M0[i][ii][j1][jj]; } M0[i][ii][0][jj]=(M5[0]+M5[1])*13; M0[i][ii][2][jj]=(M5[0]-M5[1])*13; M0[i][ii][1][jj]= M5[3]*17+M5[2]*7; M0[i][ii][3][jj]= M5[3]*7 -M5[2]*17; } } } // pick out DC coeff for (j=0;j<4;j++) for (i=0;i<4;i++) M4[i][j]= 49 * M0[0][i][0][j]/32768; for (j=0;j<4;j++) { for (i=0;i<2;i++) { i1=3-i; M5[i]= M4[i][j]+M4[i1][j]; M5[i1]=M4[i][j]-M4[i1][j]; } M4[0][j]=(M5[0]+M5[1])*13; M4[2][j]=(M5[0]-M5[1])*13; M4[1][j]= M5[3]*17+M5[2]*7; M4[3][j]= M5[3]*7 -M5[2]*17; } // vertical for (i=0;i<4;i++) { for (j=0;j<2;j++) { j1=3-j; M5[j]= M4[i][j]+M4[i][j1]; M5[j1]=M4[i][j]-M4[i][j1]; } M4[i][0]=(M5[0]+M5[1])*13; M4[i][2]=(M5[0]-M5[1])*13; M4[i][1]= M5[3]*17+M5[2]*7; M4[i][3]= M5[3]*7 -M5[2]*17; } // quant quant_set=img->qp; run=-1; scan_pos=0;#ifndef NO_RDQUANT for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++) { i=SNGL_SCAN[coeff_ctr][0]; j=SNGL_SCAN[coeff_ctr][1]; coeff[coeff_ctr]=M4[i][j]; } rd_quant(QUANT_LUMA_SNG,coeff); for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++) { i=SNGL_SCAN[coeff_ctr][0]; j=SNGL_SCAN[coeff_ctr][1]; run++; level=abs(coeff[coeff_ctr]); if (level != 0) { img->cof[0][0][scan_pos][0][1]=sign(level,M4[i][j]); img->cof[0][0][scan_pos][1][1]=run; ++scan_pos; run=-1; }#endif#ifdef NO_RDQUANT for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++) { i=SNGL_SCAN[coeff_ctr][0]; j=SNGL_SCAN[coeff_ctr][1]; run++; level= (abs(M4[i][j]) * JQ[quant_set][0]+qp_const)/JQQ1; if (level != 0) { img->cof[0][0][scan_pos][0][1]=sign(level,M4[i][j]); img->cof[0][0][scan_pos][1][1]=run; ++scan_pos; run=-1; }#endif M4[i][j]=sign(level,M4[i][j]); } img->cof[0][0][scan_pos][0][1]=0; // invers DC transform for (j=0;j<4;j++) { for (i=0;i<4;i++) M5[i]=M4[i][j]; M6[0]=(M5[0]+M5[2])*13; M6[1]=(M5[0]-M5[2])*13; M6[2]= M5[1]*7 -M5[3]*17; M6[3]= M5[1]*17+M5[3]*7; for (i=0;i<2;i++) { i1=3-i; M4[i][j]= M6[i]+M6[i1]; M4[i1][j]=M6[i]-M6[i1];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -