⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 block.c

📁 网络MPEG4IP流媒体开发源代码
💻 C
📖 第 1 页 / 共 5 页
字号:
/************************************************************************* COPYRIGHT AND WARRANTY INFORMATION** Copyright 2001, International Telecommunications Union, Geneva** DISCLAIMER OF WARRANTY** These software programs are available to the user without any* license fee or royalty on an "as is" basis. The ITU disclaims* any and all warranties, whether express, implied, or* statutory, including any implied warranties of merchantability* or of fitness for a particular purpose.  In no event shall the* contributor or the ITU be liable for any incidental, punitive, or* consequential damages of any kind whatsoever arising from the* use of these programs.** This disclaimer of warranty extends to the user of these programs* and user's customers, employees, agents, transferees, successors,* and assigns.** The ITU does not represent or warrant that the programs furnished* hereunder are free of infringement of any third-party patents.* Commercial implementations of ITU-T Recommendations, including* shareware, may be subject to royalty fees to patent holders.* Information regarding the ITU-T patent policy is available from* the ITU Web site at http://www.itu.int.** THIS IS NOT A GRANT OF PATENT RIGHTS - SEE THE ITU-T PATENT POLICY.*************************************************************************//*! ************************************************************************************* * \file block.c * * \brief *    Process one block * * \author *    Main contributors (see contributors.h for copyright, address and affiliation details) *    - Inge Lille-Lang鴜               <inge.lille-langoy@telenor.com> *    - Rickard Sjoberg                 <rickard.sjoberg@era.ericsson.se> *    - Stephan Wenger                  <stewe@cs.tu-berlin.de> *    - Jani Lainema                    <jani.lainema@nokia.com> *    - Detlev Marpe                    <marpe@hhi.de> *    - Thomas Wedi                     <wedi@tnt.uni-hannover.de> *    - Ragip Kurceren                  <ragip.kurceren@nokia.com> ************************************************************************************* */#include "contributors.h"#include <math.h>#include <stdlib.h>#include <assert.h>#include "block.h"#include "refbuf.h"/*! ************************************************************************ * \brief *    Make intra 4x4 prediction according to all 6 prediction modes. *    The routine uses left and upper neighbouring points from *    previous coded blocks to do this (if available). Notice that *    inaccessible neighbouring points are signalled with a negative *    value i the predmode array . * *  \para Input: *     Starting point of current 4x4 block image posision * *  \para Output: *      none ************************************************************************ */void intrapred_luma(int img_x,int img_y){  int i,j,s0=0,s1,s2,ia[7][3],s[4][2];  int block_available_up = (img->ipredmode[img_x/BLOCK_SIZE+1][img_y/BLOCK_SIZE] >=0);  int block_available_left = (img->ipredmode[img_x/BLOCK_SIZE][img_y/BLOCK_SIZE+1] >=0);  s1=0;  s2=0;  // make DC prediction  for (i=0; i < BLOCK_SIZE; i++)  {    if (block_available_up)      s1 += imgY[img_y-1][img_x+i];    // sum hor pix    if (block_available_left)      s2 += imgY[img_y+i][img_x-1];    // sum vert pix  }  if (block_available_up && block_available_left)    s0=(s1+s2+4)/(2*BLOCK_SIZE);      // no edge  if (!block_available_up && block_available_left)    s0=(s2+2)/BLOCK_SIZE;             // upper edge  if (block_available_up && !block_available_left)    s0=(s1+2)/BLOCK_SIZE;             // left edge  if (!block_available_up && !block_available_left)    s0=128;                           // top left corner, nothing to predict from  for (i=0; i < BLOCK_SIZE; i++)  {    // vertical prediction    if (block_available_up)      s[i][0]=imgY[img_y-1][img_x+i];    // horizontal prediction    if (block_available_left)      s[i][1]=imgY[img_y+i][img_x-1];  }  for (j=0; j < BLOCK_SIZE; j++)  {    for (i=0; i < BLOCK_SIZE; i++)    {      img->mprr[DC_PRED][i][j]=s0;      // store DC prediction      img->mprr[VERT_PRED][i][j]=s[j][0]; // store vertical prediction      img->mprr[HOR_PRED][i][j]=s[i][1]; // store horizontal prediction    }  }  //  Prediction according to 'diagonal' modes  if (block_available_up && block_available_left)  {    int A = imgY[img_y-1][img_x];    int B = imgY[img_y-1][img_x+1];    int C = imgY[img_y-1][img_x+2];    int D = imgY[img_y-1][img_x+3];    int E = imgY[img_y  ][img_x-1];    int F = imgY[img_y+1][img_x-1];    int G = imgY[img_y+2][img_x-1];    int H = imgY[img_y+3][img_x-1];    int I = imgY[img_y-1][img_x-1];    ia[0][0]=(H+2*G+F+2)/4;    ia[1][0]=(G+2*F+E+2)/4;    ia[2][0]=(F+2*E+I+2)/4;    ia[3][0]=(E+2*I+A+2)/4;    ia[4][0]=(I+2*A+B+2)/4;    ia[5][0]=(A+2*B+C+2)/4;    ia[6][0]=(B+2*C+D+2)/4;    for (i=0;i<4;i++)      for (j=0;j<4;j++)        img->mprr[DIAG_PRED_LR_45][i][j]=ia[j-i+3][0];  }  if (block_available_up)  { // Do prediction 1    int A = imgY[img_y-1][img_x+0];    int B = imgY[img_y-1][img_x+1];    int C = imgY[img_y-1][img_x+2];    int D = imgY[img_y-1][img_x+3];    img->mprr[DIAG_PRED_RL][0][0] = (A+B)/2; // a    img->mprr[DIAG_PRED_RL][1][0] = B;       // e    img->mprr[DIAG_PRED_RL][0][1] = img->mprr[DIAG_PRED_RL][2][0] = (B+C)/2; // b i    img->mprr[DIAG_PRED_RL][1][1] = img->mprr[DIAG_PRED_RL][3][0] = C;       // f m    img->mprr[DIAG_PRED_RL][0][2] = img->mprr[DIAG_PRED_RL][2][1] = (C+D)/2; // c j    img->mprr[DIAG_PRED_RL][3][1] =        img->mprr[DIAG_PRED_RL][1][2] =            img->mprr[DIAG_PRED_RL][2][2] =                img->mprr[DIAG_PRED_RL][3][2] =                    img->mprr[DIAG_PRED_RL][0][3] =                        img->mprr[DIAG_PRED_RL][1][3] =                            img->mprr[DIAG_PRED_RL][2][3] =                                img->mprr[DIAG_PRED_RL][3][3] = D; // d g h k l n o p  }  if (block_available_left)  { // Do prediction 5    int E = imgY[img_y+0][img_x-1];    int F = imgY[img_y+1][img_x-1];    int G = imgY[img_y+2][img_x-1];    int H = imgY[img_y+3][img_x-1];    img->mprr[DIAG_PRED_LR][0][0] = (E+F)/2; // a    img->mprr[DIAG_PRED_LR][0][1] = F;       // b    img->mprr[DIAG_PRED_LR][1][0] = img->mprr[DIAG_PRED_LR][0][2] = (F+G)/2; // e c    img->mprr[DIAG_PRED_LR][1][1] = img->mprr[DIAG_PRED_LR][0][3] = G;       // f d    img->mprr[DIAG_PRED_LR][2][0] = img->mprr[DIAG_PRED_LR][1][2] = (G+H)/2; // i g    img->mprr[DIAG_PRED_LR][1][3] =        img->mprr[DIAG_PRED_LR][2][1] =            img->mprr[DIAG_PRED_LR][2][2] =                img->mprr[DIAG_PRED_LR][2][3] =                    img->mprr[DIAG_PRED_LR][3][0] =                        img->mprr[DIAG_PRED_LR][3][1] =                            img->mprr[DIAG_PRED_LR][3][2] =                                img->mprr[DIAG_PRED_LR][3][3] = H;  }}/*! ************************************************************************ * \brief *    16x16 based luma prediction * * \para Input: *    Image parameters * * \para Output: *    none ************************************************************************ */void intrapred_luma_2(){  int s0=0,s1,s2;  int i,j;  int s[16][2];  int ih,iv;  int ib,ic,iaa;  int mb_nr = img->current_mb_nr;  int mb_width = img->width/16;  int mb_available_up = (img->mb_y == 0) ? 0 : (img->slice_numbers[mb_nr] == img->slice_numbers[mb_nr-mb_width]);  int mb_available_left = (img->mb_x == 0) ? 0 : (img->slice_numbers[mb_nr] == img->slice_numbers[mb_nr-1]);  if(input->UseConstrainedIntraPred)  {    if (mb_available_up && (img->intra_mb[mb_nr-mb_width] ==0))      mb_available_up = 0;    if (mb_available_left && (img->intra_mb[mb_nr-1] ==0))      mb_available_left = 0;  }  s1=s2=0;  // make DC prediction  for (i=0; i < MB_BLOCK_SIZE; i++)  {    if (mb_available_up)      s1 += imgY[img->pix_y-1][img->pix_x+i];    // sum hor pix    if (mb_available_left)      s2 += imgY[img->pix_y+i][img->pix_x-1];    // sum vert pix  }  if (mb_available_up && mb_available_left)    s0=(s1+s2+16)/(2*MB_BLOCK_SIZE);             // no edge  if (!mb_available_up && mb_available_left)    s0=(s2+8)/MB_BLOCK_SIZE;                     // upper edge  if (mb_available_up && !mb_available_left)    s0=(s1+8)/MB_BLOCK_SIZE;                     // left edge  if (!mb_available_up && !mb_available_left)    s0=128;                                      // top left corner, nothing to predict from  for (i=0; i < MB_BLOCK_SIZE; i++)  {    // vertical prediction    if (mb_available_up)      s[i][0]=imgY[img->pix_y-1][img->pix_x+i];    // horizontal prediction    if (mb_available_left)      s[i][1]=imgY[img->pix_y+i][img->pix_x-1];  }  for (j=0; j < MB_BLOCK_SIZE; j++)  {    for (i=0; i < MB_BLOCK_SIZE; i++)    {      img->mprr_2[VERT_PRED_16][j][i]=s[i][0]; // store vertical prediction      img->mprr_2[HOR_PRED_16 ][j][i]=s[j][1]; // store horizontal prediction      img->mprr_2[DC_PRED_16  ][j][i]=s0;      // store DC prediction    }  }  if (!mb_available_up || !mb_available_left) // edge    return;  // 16 bit integer plan pred  ih=0;  iv=0;  for (i=1;i<9;i++)  {    ih += i*(imgY[img->pix_y-1][img->pix_x+7+i] - imgY[img->pix_y-1][img->pix_x+7-i]);    iv += i*(imgY[img->pix_y+7+i][img->pix_x-1] - imgY[img->pix_y+7-i][img->pix_x-1]);  }  ib=5*(ih/4)/16;  ic=5*(iv/4)/16;  iaa=16*(imgY[img->pix_y-1][img->pix_x+15]+imgY[img->pix_y+15][img->pix_x-1]);  for (j=0;j< MB_BLOCK_SIZE;j++)  {    for (i=0;i< MB_BLOCK_SIZE;i++)    {      img->mprr_2[PLANE_16][j][i]=max(0,min(255,(iaa+(i-7)*ib +(j-7)*ic + 16)/32));/* store plane prediction */                                  }  }}/*! ************************************************************************ * \brief *    For new intra pred routines * * \para Input: *    Image par, 16x16 based intra mode * * \para Output: *    none ************************************************************************ */void dct_luma2(int new_intra_mode){#ifndef NO_RDQUANT  int jq0;#endif#ifdef NO_RDQUANT  int qp_const;#endif  int i,j;  int ii,jj;  int i1,j1;  int M1[16][16];  int M4[4][4];  int M5[4],M6[4];  int M0[4][4][4][4];#ifndef NO_RDQUANT  int coeff[16];#endif  int quant_set,run,scan_pos,coeff_ctr,level;#ifndef NO_RDQUANT  jq0=JQQ3;#endif#ifdef NO_RDQUANT  qp_const = JQQ3;#endif  for (j=0;j<16;j++)  {    for (i=0;i<16;i++)    {      M1[i][j]=imgY_org[img->pix_y+j][img->pix_x+i]-img->mprr_2[new_intra_mode][j][i];      M0[i%4][i/4][j%4][j/4]=M1[i][j];    }  }  for (jj=0;jj<4;jj++)  {    for (ii=0;ii<4;ii++)    {      for (j=0;j<4;j++)      {        for (i=0;i<2;i++)        {          i1=3-i;          M5[i]=  M0[i][ii][j][jj]+M0[i1][ii][j][jj];          M5[i1]= M0[i][ii][j][jj]-M0[i1][ii][j][jj];        }        M0[0][ii][j][jj]=(M5[0]+M5[1])*13;        M0[2][ii][j][jj]=(M5[0]-M5[1])*13;        M0[1][ii][j][jj]=M5[3]*17+M5[2]*7;        M0[3][ii][j][jj]=M5[3]*7-M5[2]*17;      }      // vertical      for (i=0;i<4;i++)      {        for (j=0;j<2;j++)        {          j1=3-j;          M5[j] = M0[i][ii][j][jj]+M0[i][ii][j1][jj];          M5[j1]= M0[i][ii][j][jj]-M0[i][ii][j1][jj];        }        M0[i][ii][0][jj]=(M5[0]+M5[1])*13;        M0[i][ii][2][jj]=(M5[0]-M5[1])*13;        M0[i][ii][1][jj]= M5[3]*17+M5[2]*7;        M0[i][ii][3][jj]= M5[3]*7 -M5[2]*17;      }    }  }  // pick out DC coeff  for (j=0;j<4;j++)    for (i=0;i<4;i++)      M4[i][j]= 49 * M0[0][i][0][j]/32768;  for (j=0;j<4;j++)  {    for (i=0;i<2;i++)    {      i1=3-i;      M5[i]= M4[i][j]+M4[i1][j];      M5[i1]=M4[i][j]-M4[i1][j];    }    M4[0][j]=(M5[0]+M5[1])*13;    M4[2][j]=(M5[0]-M5[1])*13;    M4[1][j]= M5[3]*17+M5[2]*7;    M4[3][j]= M5[3]*7 -M5[2]*17;  }  // vertical  for (i=0;i<4;i++)  {    for (j=0;j<2;j++)    {      j1=3-j;      M5[j]= M4[i][j]+M4[i][j1];      M5[j1]=M4[i][j]-M4[i][j1];    }    M4[i][0]=(M5[0]+M5[1])*13;    M4[i][2]=(M5[0]-M5[1])*13;    M4[i][1]= M5[3]*17+M5[2]*7;    M4[i][3]= M5[3]*7 -M5[2]*17;  }  // quant  quant_set=img->qp;  run=-1;  scan_pos=0;#ifndef NO_RDQUANT  for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)  {    i=SNGL_SCAN[coeff_ctr][0];    j=SNGL_SCAN[coeff_ctr][1];    coeff[coeff_ctr]=M4[i][j];  }  rd_quant(QUANT_LUMA_SNG,coeff);  for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)  {    i=SNGL_SCAN[coeff_ctr][0];    j=SNGL_SCAN[coeff_ctr][1];    run++;    level=abs(coeff[coeff_ctr]);    if (level != 0)    {      img->cof[0][0][scan_pos][0][1]=sign(level,M4[i][j]);      img->cof[0][0][scan_pos][1][1]=run;      ++scan_pos;      run=-1;    }#endif#ifdef NO_RDQUANT  for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)  {    i=SNGL_SCAN[coeff_ctr][0];    j=SNGL_SCAN[coeff_ctr][1];    run++;    level= (abs(M4[i][j]) * JQ[quant_set][0]+qp_const)/JQQ1;    if (level != 0)    {      img->cof[0][0][scan_pos][0][1]=sign(level,M4[i][j]);      img->cof[0][0][scan_pos][1][1]=run;      ++scan_pos;      run=-1;    }#endif    M4[i][j]=sign(level,M4[i][j]);  }  img->cof[0][0][scan_pos][0][1]=0;  // invers DC transform  for (j=0;j<4;j++)  {    for (i=0;i<4;i++)      M5[i]=M4[i][j];    M6[0]=(M5[0]+M5[2])*13;    M6[1]=(M5[0]-M5[2])*13;    M6[2]= M5[1]*7 -M5[3]*17;    M6[3]= M5[1]*17+M5[3]*7;    for (i=0;i<2;i++)    {      i1=3-i;      M4[i][j]= M6[i]+M6[i1];      M4[i1][j]=M6[i]-M6[i1];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -