⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rijndael-api-fst.c

📁 网络MPEG4IP流媒体开发源代码
💻 C
字号:
/* * rijndael-api-fst.c   v2.4   April '2000 * * Optimised ANSI C code * * authors: v1.0: Antoon Bosselaers *          v2.0: Vincent Rijmen *          v2.1: Vincent Rijmen *          v2.2: Vincent Rijmen *          v2.3: Paulo Barreto *          v2.4: Vincent Rijmen * * This code is placed in the public domain. */#include <assert.h>#include <stdlib.h>#include <string.h>#include "rijndael-alg-fst.h"#include "rijndael-api-fst.h"int makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) {	word8 k[MAXKC][4];	int i;	char *keyMat;		if (key == NULL) {		return BAD_KEY_INSTANCE;	}	if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {		key->direction = direction;	} else {		return BAD_KEY_DIR;	}	if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) { 		key->keyLen = keyLen;	} else {		return BAD_KEY_MAT;	}	if (keyMaterial != NULL) {		strncpy(key->keyMaterial, keyMaterial, keyLen/4);	}	key->ROUNDS = keyLen/32 + 6;	/* initialize key schedule: */	keyMat = key->keyMaterial;#ifndef BINARY_KEY_MATERIAL 	for (i = 0; i < key->keyLen/8; i++) {		int t, j;		t = *keyMat++;		if ((t >= '0') && (t <= '9')) j = (t - '0') << 4;		else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4; 		else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4; 		else return BAD_KEY_MAT;				t = *keyMat++;		if ((t >= '0') && (t <= '9')) j ^= (t - '0');		else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10); 		else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10); 		else return BAD_KEY_MAT;				k[i >> 2][i & 3] = (word8)j; 	}#else	for (i = 0; i < key->keyLen/8; i++) {		k[i >> 2][i & 3] = (word8)keyMat[i]; 	}#endif /* ?BINARY_KEY_MATERIAL */	rijndaelKeySched(k, key->keySched, key->ROUNDS);	if (direction == DIR_DECRYPT) {		rijndaelKeyEncToDec(key->keySched, key->ROUNDS);	}	return TRUE;}int cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {	if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {		cipher->mode = mode;	} else {		return BAD_CIPHER_MODE;	}	if (IV != NULL) {#ifndef BINARY_KEY_MATERIAL		int i; 		for (i = 0; i < MAX_IV_SIZE; i++) {			int t, j;			t = IV[2*i];			if ((t >= '0') && (t <= '9')) j = (t - '0') << 4;			else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4; 			else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4; 			else return BAD_CIPHER_INSTANCE;					t = IV[2*i+1];			if ((t >= '0') && (t <= '9')) j ^= (t - '0');			else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10); 			else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10); 			else return BAD_CIPHER_INSTANCE;						cipher->IV[i] = (word8)j;		}#else		memcpy(cipher->IV, IV, MAX_IV_SIZE);#endif /* ?BINARY_KEY_MATERIAL */	} else {		memset(cipher->IV, 0, MAX_IV_SIZE);	}	return TRUE;}int blockEncrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputLen, BYTE *outBuffer) {	int i, k, numBlocks;	word8 block[16], iv[4][4];	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_DECRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputLen <= 0) {		return 0; /* nothing to do */	}	numBlocks = inputLen/128;		switch (cipher->mode) {	case MODE_ECB: 		for (i = numBlocks; i > 0; i--) {			rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS);			input += 16;			outBuffer += 16;		}		break;			case MODE_CBC:		((word32*)block)[0] = ((word32*)cipher->IV)[0] ^ ((word32*)input)[0];		((word32*)block)[1] = ((word32*)cipher->IV)[1] ^ ((word32*)input)[1];		((word32*)block)[2] = ((word32*)cipher->IV)[2] ^ ((word32*)input)[2];		((word32*)block)[3] = ((word32*)cipher->IV)[3] ^ ((word32*)input)[3];		rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);		input += 16;		for (i = numBlocks - 1; i > 0; i--) {			((word32*)block)[0] = ((word32*)outBuffer)[0] ^ ((word32*)input)[0];			((word32*)block)[1] = ((word32*)outBuffer)[1] ^ ((word32*)input)[1];			((word32*)block)[2] = ((word32*)outBuffer)[2] ^ ((word32*)input)[2];			((word32*)block)[3] = ((word32*)outBuffer)[3] ^ ((word32*)input)[3];			outBuffer += 16;			rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);			input += 16;		}		break;		case MODE_CFB1:#if STRICT_ALIGN 		memcpy(iv, cipher->IV, 16); #else  /* !STRICT_ALIGN */		*((word32*)iv[0]) = *((word32*)(cipher->IV   ));		*((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));		*((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));		*((word32*)iv[3]) = *((word32*)(cipher->IV+12));#endif /* ?STRICT_ALIGN */		for (i = numBlocks; i > 0; i--) {			for (k = 0; k < 128; k++) {				*((word32*) block    ) = *((word32*)iv[0]);				*((word32*)(block+ 4)) = *((word32*)iv[1]);				*((word32*)(block+ 8)) = *((word32*)iv[2]);				*((word32*)(block+12)) = *((word32*)iv[3]);				rijndaelEncrypt(block, block, key->keySched, key->ROUNDS);				outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);				iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);				iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);				iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);				iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);				iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);				iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);				iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);				iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);				iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);				iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);				iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);				iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);				iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);				iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);				iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);				iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1);			}		}		break;		default:		return BAD_CIPHER_STATE;	}		return 128*numBlocks;}/** * Encrypt data partitioned in octets, using RFC 2040-like padding. * * @param   input           data to be encrypted (octet sequence) * @param   inputOctets		input length in octets (not bits) * @param   outBuffer       encrypted output data * * @return	length in octets (not bits) of the encrypted output buffer. */int padEncrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputOctets, BYTE *outBuffer) {	int i, numBlocks, padLen;	word8 block[16], *iv;	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_DECRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputOctets <= 0) {		return 0; /* nothing to do */	}	numBlocks = inputOctets/16;	switch (cipher->mode) {	case MODE_ECB: 		for (i = numBlocks; i > 0; i--) {			rijndaelEncrypt(input, outBuffer, key->keySched, key->ROUNDS);			input += 16;			outBuffer += 16;		}		padLen = 16 - (inputOctets - 16*numBlocks);		assert(padLen > 0 && padLen <= 16);		memcpy(block, input, 16 - padLen);		memset(block + 16 - padLen, padLen, padLen);		rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);		break;	case MODE_CBC:		iv = cipher->IV;		for (i = numBlocks; i > 0; i--) {			((word32*)block)[0] = ((word32*)input)[0] ^ ((word32*)iv)[0];			((word32*)block)[1] = ((word32*)input)[1] ^ ((word32*)iv)[1];			((word32*)block)[2] = ((word32*)input)[2] ^ ((word32*)iv)[2];			((word32*)block)[3] = ((word32*)input)[3] ^ ((word32*)iv)[3];			rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);			iv = outBuffer;			input += 16;			outBuffer += 16;		}		padLen = 16 - (inputOctets - 16*numBlocks);		assert(padLen > 0 && padLen <= 16);		for (i = 0; i < 16 - padLen; i++) {			block[i] = input[i] ^ iv[i];		}		for (i = 16 - padLen; i < 16; i++) {			block[i] = (BYTE)padLen ^ iv[i];		}		rijndaelEncrypt(block, outBuffer, key->keySched, key->ROUNDS);		break;	default:		return BAD_CIPHER_STATE;	}	return 16*(numBlocks + 1);}int blockDecrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputLen, BYTE *outBuffer) {	int i, k, numBlocks;	word8 block[16], iv[4][4];	if (cipher == NULL ||		key == NULL ||		(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputLen <= 0) {		return 0; /* nothing to do */	}	numBlocks = inputLen/128;	switch (cipher->mode) {	case MODE_ECB: 		for (i = numBlocks; i > 0; i--) { 			rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS);			input += 16;			outBuffer += 16;		}		break;			case MODE_CBC:#if STRICT_ALIGN 		memcpy(iv, cipher->IV, 16); #else		*((word32*)iv[0]) = *((word32*)(cipher->IV   ));		*((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));		*((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));		*((word32*)iv[3]) = *((word32*)(cipher->IV+12));#endif		for (i = numBlocks; i > 0; i--) {			rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);			((word32*)block)[0] ^= *((word32*)iv[0]);			((word32*)block)[1] ^= *((word32*)iv[1]);			((word32*)block)[2] ^= *((word32*)iv[2]);			((word32*)block)[3] ^= *((word32*)iv[3]);#if STRICT_ALIGN			memcpy(iv, input, 16);			memcpy(outBuf, block, 16);#else			*((word32*)iv[0]) = ((word32*)input)[0]; ((word32*)outBuffer)[0] = ((word32*)block)[0];			*((word32*)iv[1]) = ((word32*)input)[1]; ((word32*)outBuffer)[1] = ((word32*)block)[1];			*((word32*)iv[2]) = ((word32*)input)[2]; ((word32*)outBuffer)[2] = ((word32*)block)[2];			*((word32*)iv[3]) = ((word32*)input)[3]; ((word32*)outBuffer)[3] = ((word32*)block)[3];#endif			input += 16;			outBuffer += 16;		}		break;		case MODE_CFB1:#if STRICT_ALIGN 		memcpy(iv, cipher->IV, 16); #else		*((word32*)iv[0]) = *((word32*)(cipher->IV));		*((word32*)iv[1]) = *((word32*)(cipher->IV+ 4));		*((word32*)iv[2]) = *((word32*)(cipher->IV+ 8));		*((word32*)iv[3]) = *((word32*)(cipher->IV+12));#endif		for (i = numBlocks; i > 0; i--) {			for (k = 0; k < 128; k++) {				*((word32*) block    ) = *((word32*)iv[0]);				*((word32*)(block+ 4)) = *((word32*)iv[1]);				*((word32*)(block+ 8)) = *((word32*)iv[2]);				*((word32*)(block+12)) = *((word32*)iv[3]);				rijndaelEncrypt(block, block, key->keySched, key->ROUNDS);				iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);				iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);				iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);				iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);				iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);				iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);				iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);				iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);				iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);				iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);				iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);				iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);				iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);				iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);				iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);				iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1);				outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);			}		}		break;	default:		return BAD_CIPHER_STATE;	}		return 128*numBlocks;}int padDecrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputOctets, BYTE *outBuffer) {	int i, numBlocks, padLen;	word8 block[16];	word32 iv[4];	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_ENCRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputOctets <= 0) {		return 0; /* nothing to do */	}	if (inputOctets % 16 != 0) {		return BAD_DATA;	}	numBlocks = inputOctets/16;	switch (cipher->mode) {	case MODE_ECB:		/* all blocks but last */		for (i = numBlocks - 1; i > 0; i--) { 			rijndaelDecrypt(input, outBuffer, key->keySched, key->ROUNDS);			input += 16;			outBuffer += 16;		}		/* last block */		rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);		padLen = block[15];		if (padLen >= 16) {			return BAD_DATA;		}		for (i = 16 - padLen; i < 16; i++) {			if (block[i] != padLen) {				return BAD_DATA;			}		}		memcpy(outBuffer, block, 16 - padLen);		break;			case MODE_CBC:		memcpy(iv, cipher->IV, 16);		/* all blocks but last */		for (i = numBlocks - 1; i > 0; i--) {			rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);			((word32*)block)[0] ^= iv[0];			((word32*)block)[1] ^= iv[1];			((word32*)block)[2] ^= iv[2];			((word32*)block)[3] ^= iv[3];			memcpy(iv, input, 16);			memcpy(outBuffer, block, 16);			input += 16;			outBuffer += 16;		}		/* last block */		rijndaelDecrypt(input, block, key->keySched, key->ROUNDS);		((word32*)block)[0] ^= iv[0];		((word32*)block)[1] ^= iv[1];		((word32*)block)[2] ^= iv[2];		((word32*)block)[3] ^= iv[3];		padLen = block[15];		if (padLen <= 0 || padLen > 16) {			return BAD_DATA;		}		for (i = 16 - padLen; i < 16; i++) {			if (block[i] != padLen) {				return BAD_DATA;			}		}		memcpy(outBuffer, block, 16 - padLen);		break;		default:		return BAD_CIPHER_STATE;	}		return 16*numBlocks - padLen;}#ifdef INTERMEDIATE_VALUE_KAT/** *	cipherUpdateRounds: * *	Encrypts/Decrypts exactly one full block a specified number of rounds. *	Only used in the Intermediate Value Known Answer Test.	 * *	Returns: *		TRUE - on success *		BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized) */int cipherUpdateRounds(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputLen, BYTE *outBuffer, int rounds) {	int j;	word8 block[4][4];	if (cipher == NULL || key == NULL) {		return BAD_CIPHER_STATE;	}	for (j = 3; j >= 0; j--) {		/* parse input stream into rectangular array */  		*((word32*)block[j]) = *((word32*)(input+4*j));	}	switch (key->direction) {	case DIR_ENCRYPT:		rijndaelEncryptRound(block, key->keySched, key->ROUNDS, rounds);		break;			case DIR_DECRYPT:		rijndaelDecryptRound(block, key->keySched, key->ROUNDS, rounds);		break;			default:		return BAD_KEY_DIR;	} 	for (j = 3; j >= 0; j--) {		/* parse rectangular array into output ciphertext bytes */		*((word32*)(outBuffer+4*j)) = *((word32*)block[j]);	}		return TRUE;}#endif /* INTERMEDIATE_VALUE_KAT */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -