⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ex7bvp.m

📁 MATLAB边值问题求解的文档和源代码
💻 M
字号:
function ex7bvp
%EX7BVP  Example 7 of the BVP tutorial.
%   This is the first example problem for D02HBF from the NAG library.  
%   The problem is y'' = (y^3 - y')/(2x), y(0) = 0.1, y(16) = 1/6.  The
%   singularity at the origin is handled by using a series to represent 
%   the solution and its derivative at a "small" distance d > 0, namely
%   
%      y(d)  = 0.1 + y'(0)*sqrt(d)/10 + d/100 
%      y'(d) = y'(0)/(20*sqrt(d)) + 1/100
%   
%   The value y'(0) is treated as an unknown parameter p. The problem is
%   solved numerically on [d, 16].  Two boundary conditions are that the
%   computed solution and its first derivative agree with the values from
%   the series at d.  The remaining boundary condition is y(16) = 1/6.
%   
%   The results from the documentation for D02HBF are here compared to 
%   curves produced by bvp4c.


  options = bvpset('stats','on');

  d = 0.1;  % The known parameter, visible in nested functions.
  solinit = bvpinit(linspace(d,16,5),[1 1],0.2);

  sol = bvp4c(@ex7ode,@ex7bc,solinit,options);

  % Augment the solution array with the values y(0) = 0.1, y'(0) = p
  % to get a solution on [0, 16].
  x = [0 sol.x];
  y = [[0.1; sol.parameters] sol.y];
  
  % Solution obtained using D02HBF, augmented with the values y(0), y'(0).
  nagx = [0.00 0.10 3.28 6.46 9.64 12.82 16.00]';
  nagy = [0.1000  4.629e-2
          0.1025  0.0173
          0.1217  0.0042
          0.1338  0.0036
          0.1449  0.0034
          0.1557  0.0034
          0.1667  0.0035];
  
  figure
  plot(x,y(1,:),x,y(2,:),'--',nagx,nagy,'*')
  axis([-1 16 0 0.18])
  title('Problem with singular behavior at the origin.')
  xlabel('x')
  ylabel('y, dy/dx (--), and D02HBF (*) solutions')
  
  % --------------------------------------------------------------------------
  % Nested functions
  %

  function dydx = ex7ode(x,y,p)
  %EX7ODE  ODE function for Example 7 of the BVP tutorial.
    dydx = [ y(2)
             (y(1)^3 - y(2))/(2*x) ];
  end % ex7ode
  
  % --------------------------------------------------------------------------

  function res = ex7bc(ya,yb,p)
  %EX7BC  Boundary conditions for Example 7 of the BVP tutorial.
  %   The boundary conditions at x = d are that y and y' have
  %   values yatd and ypatd obtained from series expansions.
  %   The unknown parameter p = y'(0) and known parameter d are 
  %   used in the expansions.
    yatd =  0.1 + p*sqrt(d)/10 + d/100;
    ypatd = p/(20*sqrt(d)) + 1/100;
    res = [ ya(1) - yatd
            ya(2) - ypatd
            yb(1) - 1/6 ];
  end % ex7bc
  
  % --------------------------------------------------------------------------

end  % ex7bvp

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -