⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spacevec.m

📁 关于电机的.m程序
💻 M
字号:
% SPACE VECTORS           <spacevec.m>
clear,clc,close all
disp(date)
info= ...
        ['            DEFINITION OF SPACE VECTORS             '                                
         ' Three-phase variables fA, fB, fC (at a given time) '  
         ' are combined in a (2-element) space vector f refer-'
         ' red to the A_axis. The converse transformation from'  
         ' the space vector f back to the 3-phase components  '  
         ' is indicated. Finally, the transformation of f in a' 
         ' new reference frame k is established.              '
         ' The only restriction is that the original 3-phase  '
         ' components have no zero-sequence components , i.e. '
         ' fA + fB + fC = 0.                    <spacevec.m>  '
         '                                                    '];  
disp(info) 
web(which('dqtransform.html'));
%
fA=input('Value for phase A  fA = ');
    if isempty(fA) fA=1,end
fB=input('Value for phase B  fB = ');
    if isempty(fB) fB=1,end
fC=-fA-fB; 
theta=input('Angle of dq frame referred to A_axis [rad] = ');
    if isempty(theta) theta=1,end
G=round(1.3*max(abs([fA,fB,fC])));echo on    
fABC=[fA;fB;fC]    % three-phase signal
                   %3-phase unit space vectors
uA=[1;0];  uB=[-1/2;sqrt(3)/2];uC=[-1/2;-sqrt(3)/2];       
                   % ABC==>ab transformation
fA_=fA*uA;fB_=fB*uB;fC_=fC*uC;
fab=2/3*(fA_+fB_+fC_) % space vector f=[fa;fb]
%     or   fab=2/3*[1 -1/2 -1/2;0 sqrt(3)/2 -sqrt(3)/2]*fABC
                   % ab==>ABC transformation
fAq=dot(fab,uA); % projection of f on A-axis
fBq=dot(fab,uB); % projection of f on B-axis
fCq=dot(fab,uC); % projection of f on C-axis
fABC1=[fAq;fBq;fCq]
%    or    fABC=[1 0;-1/2 sqrt(3)/2;-1/2 -sqrt(3)/2]*fab 
                  % ab==>dq transformation
fdq=[cos(theta) sin(theta)
    -sin(theta) cos(theta)]*fab % space vector fk=[fd;fq] 
                  % ABC==>dq transformation
fdq1=2/3*[cos(theta)  cos(theta-2*pi/3)  cos(theta+2*pi/3)
         -sin(theta) -sin(theta-2*pi/3) -sin(theta+2*pi/3)]*fABC 
                  % dq==>ABC transformation
fABC2=[cos(theta)         -sin(theta) 
       cos(theta-2*pi/3)  -sin(theta-2*pi/3)
       cos(theta+2*pi/3)  -sin(theta+2*pi/3)]*fdq
     % Note that if the d-axis of reference frame k is rotated by a angle theta 
     % with respect to the A-axis and counted positive for anticlockwise motion,
     % the corresponding space vector fdq is derived form the original vector fab
     % by rotating it in the opposite direction through the angle -theta.
     %
                  % power transformation
fABC_2=dot(fABC,fABC) 
fab_2=3/2*dot(fab,fab)
fdq_2=3/2*dot(fdq,fdq)
echo
% 
      h0=figure('Position',[405 70 600 560],'Name','Space vectors ',...
         'NumberTitle','off');
      h1=uicontrol( 'Parent',h0,...
          'Style','Popup',... 
          'Units','normalized', ...
	      'Callback','popspvec', ...
	      'Position',[0.82 0.05 0.11 0.05], ...
	      'String','REPEAT|QUIT');
 %      
compass(G,0,'k'),title('SPACE VECTORS'),text(1.1*G,-G/15,'A-axis'),hold on
compass(fA_(1),fA_(2),'r'); text(fA_(1),fA_(2),'f_A')
compass(fB_(1),fB_(2),'b'); text(fB_(1),fB_(2),'f_B')
compass(fC_(1),fC_(2),'g'); text(fC_(1),fC_(2),'f_C')
compass(fab(1),fab(2),'m'), text(fab(1),fab(2),'f')
compass(fdq(1),fdq(2),'c'), text(fdq(1),fdq(2),'f_k'),hold off
%
 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -