⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 src_sinc.c

📁 该程序用于采样频率的转化
💻 C
字号:
/*** Copyright (C) 2002-2004 Erik de Castro Lopo <erikd@mega-nerd.com>**** This program is free software; you can redistribute it and/or modify** it under the terms of the GNU General Public License as published by** the Free Software Foundation; either version 2 of the License, or** (at your option) any later version.**** This program is distributed in the hope that it will be useful,** but WITHOUT ANY WARRANTY; without even the implied warranty of** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the** GNU General Public License for more details.**** You should have received a copy of the GNU General Public License** along with this program; if not, write to the Free Software** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.*/#include <stdio.h>#include <stdlib.h>#include <string.h>#include "config.h"#include "float_cast.h"#include "common.h"#define	SINC_MAGIC_MARKER	MAKE_MAGIC (' ', 's', 'i', 'n', 'c', ' ')#define	ARRAY_LEN(x)		((int) (sizeof (x) / sizeof ((x) [0])))/*========================================================================================**	Macros for handling the index into the array for the filter.**	Double precision floating point is not accurate enough so use a 64 bit**	fixed point value instead. SHIFT_BITS (current value of 48) is the number**	of bits to the right of the decimal point.**	The rest of the macros are for retrieving the fractional and integer parts**	and for converting floats and ints to the fixed point format or from the**	fixed point type back to integers and floats.*/
typedef long increment_t ;/*************int32_t to int (apfilter)************************/

typedef double	coeff_t ;/*************float to double (apfilter) **********************/

#define MAKE_INCREMENT_T(x) 	((increment_t) (x))#define	SHIFT_BITS				16#define	FP_ONE					((double) (((increment_t) 1) << SHIFT_BITS))#define	DOUBLE_TO_FP(x)			(lrint ((x) * FP_ONE))#define	INT_TO_FP(x)			(((increment_t) (x)) << SHIFT_BITS)#define	FP_FRACTION_PART(x)		((x) & ((((increment_t) 1) << SHIFT_BITS) - 1))#define	FP_INTEGER_PART(x)		((x) & (((increment_t) -1) << SHIFT_BITS))#define	FP_TO_INT(x)			(((x) >> SHIFT_BITS))#define	FP_TO_DOUBLE(x)			(FP_FRACTION_PART (x) / FP_ONE)/*========================================================================================*/enum{	STATE_BUFFER_START	= 101,	STATE_DATA_CONTINUE	= 102,	STATE_BUFFER_END	= 103,	STATE_FINISHED} ;typedef struct{	int		sinc_magic_marker ;	int		channels ;	long	in_count, in_used ;	long	out_count, out_gen ;	int		coeff_half_len, index_inc ;	int		has_diffs ;	double	src_ratio, input_index ;	int		coeff_len ;	coeff_t const	*coeffs ;	int		b_current, b_end, b_real_end, b_len ;	float	buffer [1] ;} SINC_FILTER ;static int sinc_process (SRC_PRIVATE *psrc, SRC_DATA *data) ;static double calc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch) ;static void prepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len) ;static void sinc_reset (SRC_PRIVATE *psrc) ;
static coeff_t const high_qual_coeffs [] ={#include "high_qual_coeffs.h"} ; /* high_qual_coeffs */static coeff_t const mid_qual_coeffs [] ={#include "mid_qual_coeffs.h"} ; /* mid_qual_coeffs */static coeff_t const fastest_coeffs [] ={#include "fastest_coeffs.h"} ; /* fastest_coeffs *//*----------------------------------------------------------------------------------------*/const char*sinc_get_name (int src_enum){	switch (src_enum)	{	case SRC_SINC_BEST_QUALITY :			return "Best Sinc Interpolator" ;		case SRC_SINC_MEDIUM_QUALITY :			return "Medium Sinc Interpolator" ;		case SRC_SINC_FASTEST :			return "Fastest Sinc Interpolator" ;		} ;	return NULL ;} /* sinc_get_descrition */const char*sinc_get_description (int src_enum){	switch (src_enum)	{	case SRC_SINC_BEST_QUALITY :			return "Band limited sinc interpolation, best quality, 97dB SNR, 96% BW." ;		case SRC_SINC_MEDIUM_QUALITY :			return "Band limited sinc interpolation, medium quality, 97dB SNR, 90% BW." ;		case SRC_SINC_FASTEST :			return "Band limited sinc interpolation, fastest, 97dB SNR, 80% BW." ;		} ;	return NULL ;} /* sinc_get_descrition */ SINC_FILTER *filter, temp_filter ;int sinc_set_converter (SRC_PRIVATE *psrc, int src_enum){//	SINC_FILTER *filter, temp_filter ;	int count, bits ;	/* Quick sanity check. */	if (SHIFT_BITS >= sizeof (increment_t) * 8 - 1)		return SRC_ERR_SHIFT_BITS ;	if (psrc->private_data != NULL)	{	filter = (SINC_FILTER*) psrc->private_data ;/*********************/		if (filter->sinc_magic_marker != SINC_MAGIC_MARKER)		{	free(psrc->private_data) ;			psrc->private_data = NULL ;			} ;		} ;	memset (&temp_filter, 0, sizeof (temp_filter)) ;	temp_filter.sinc_magic_marker = SINC_MAGIC_MARKER ;	temp_filter.channels = psrc->channels ;	psrc->process = sinc_process ;	psrc->reset = sinc_reset ;	switch (src_enum)	{	case SRC_SINC_BEST_QUALITY :				temp_filter.coeffs = high_qual_coeffs ;				temp_filter.coeff_half_len = ARRAY_LEN (high_qual_coeffs) - 1 ;				temp_filter.index_inc = 128 ;				temp_filter.has_diffs = SRC_FALSE ;				temp_filter.coeff_len = ARRAY_LEN (high_qual_coeffs) ;				break ;		case SRC_SINC_MEDIUM_QUALITY :				temp_filter.coeffs = mid_qual_coeffs ;				temp_filter.coeff_half_len = ARRAY_LEN (mid_qual_coeffs) - 1 ;				temp_filter.index_inc = 128 ;				temp_filter.has_diffs = SRC_FALSE ;				temp_filter.coeff_len = ARRAY_LEN (mid_qual_coeffs) ;				break ;		case SRC_SINC_FASTEST :				temp_filter.coeffs = fastest_coeffs ;				temp_filter.coeff_half_len = ARRAY_LEN (fastest_coeffs) - 1 ;				temp_filter.index_inc = 128 ;				temp_filter.has_diffs = SRC_FALSE ;				temp_filter.coeff_len = ARRAY_LEN (fastest_coeffs) ;				break ;		default :				return SRC_ERR_BAD_CONVERTER ;		} ;	/*	** FIXME : This needs to be looked at more closely to see if there is	** a better way. Need to look at prepare_data () at the same time.	*/	temp_filter.b_len = 1000 + 2 * lrint (0.5 + temp_filter.coeff_len / (temp_filter.index_inc * 1.0) * SRC_MAX_RATIO) ;	temp_filter.b_len *= temp_filter.channels ;	if ((filter = calloc (1, sizeof (SINC_FILTER) + sizeof (filter->buffer [0]) * (temp_filter.b_len + temp_filter.channels))) == NULL)		return SRC_ERR_MALLOC_FAILED ;	*filter = temp_filter ;	memset (&temp_filter, 0xEE, sizeof (temp_filter)) ;	psrc->private_data = filter ;	sinc_reset (psrc) ;	count = filter->coeff_half_len ;	for (bits = 0 ; (1 << bits) < count ; bits++)		count |= (1 << bits) ;	if (bits + SHIFT_BITS - 1 >= (int) (sizeof (increment_t) * 8))		return SRC_ERR_FILTER_LEN ;	return SRC_ERR_NO_ERROR ;} /* sinc_set_converter */static voidsinc_reset (SRC_PRIVATE *psrc){	SINC_FILTER *filter ;	filter = (SINC_FILTER*) psrc->private_data ;	if (filter == NULL)		return ;	filter->b_current = filter->b_end = 0 ;	filter->b_real_end = -1 ;	filter->src_ratio = filter->input_index = 0.0 ;	memset (filter->buffer, 0, filter->b_len * sizeof (filter->buffer [0])) ;	/* Set this for a sanity check */	memset (filter->buffer + filter->b_len, 0xAA, filter->channels * sizeof (filter->buffer [0])) ;} /* sinc_reset *//*========================================================================================**	Beware all ye who dare pass this point. There be dragons here.*/static intsinc_process (SRC_PRIVATE *psrc, SRC_DATA *data){	SINC_FILTER *filter ;	double		input_index, src_ratio, count, float_increment, terminate, rem ;	increment_t	increment, start_filter_index ;	int			half_filter_chan_len, samples_in_hand, ch ;	if (psrc->private_data == NULL)		return SRC_ERR_NO_PRIVATE ;	filter = (SINC_FILTER*) psrc->private_data ;	/* If there is not a problem, this will be optimised out. */	if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))		return SRC_ERR_SIZE_INCOMPATIBILITY ;	filter->in_count = data->input_frames * filter->channels ;	filter->out_count = data->output_frames * filter->channels ;	filter->in_used = filter->out_gen = 0 ;	src_ratio = psrc->last_ratio ;	/* Check the sample rate ratio wrt the buffer len. */	count = (filter->coeff_half_len + 2.0) / filter->index_inc ;	if (MIN (psrc->last_ratio, data->src_ratio) < 1.0)		count /= MIN (psrc->last_ratio, data->src_ratio) ;	/* Maximum coefficientson either side of center point. */	half_filter_chan_len = filter->channels * (lrint (count) + 1) ;	input_index = psrc->last_position ;	float_increment = filter->index_inc ;	rem = fmod (input_index, 1.0) ;	filter->b_current = (filter->b_current + filter->channels * lrint (input_index - rem)) % filter->b_len ;	input_index = rem ;	terminate = 1.0 / src_ratio + 1e-20 ;	/* Main processing loop. */	while (filter->out_gen < filter->out_count)	{		/* Need to reload buffer? */		samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;		if (samples_in_hand <= half_filter_chan_len)		{	prepare_data (filter, data, half_filter_chan_len) ;			samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;			if (samples_in_hand <= half_filter_chan_len)				break ;			} ;		/* This is the termination condition. */		if (filter->b_real_end >= 0)		{	if (filter->b_current + input_index + terminate >= filter->b_real_end)				break ;			} ;		if (fabs (psrc->last_ratio - data->src_ratio) > 1e-10)			src_ratio = psrc->last_ratio + filter->out_gen * (data->src_ratio - psrc->last_ratio) / (filter->out_count - 1) ;		float_increment = filter->index_inc * 1.0 ;		if (src_ratio < 1.0)			float_increment = filter->index_inc * src_ratio ;		increment = DOUBLE_TO_FP (float_increment) ;		start_filter_index = DOUBLE_TO_FP (input_index * float_increment) ;		for (ch = 0 ; ch < filter->channels ; ch++)		{	data->data_out [filter->out_gen] = (float_increment / filter->index_inc) *											calc_output (filter, increment, start_filter_index, ch); 			filter->out_gen ++ ;			} ;		/* Figure out the next index. */		input_index += 1.0 / src_ratio ;		rem = fmod (input_index, 1.0) ;		filter->b_current = (filter->b_current + filter->channels * lrint (input_index - rem)) % filter->b_len ;		input_index = rem ;		} ;	psrc->last_position = input_index ;	/* Save current ratio rather then target ratio. */	psrc->last_ratio = src_ratio ;	data->input_frames_used = filter->in_used / filter->channels ;	data->output_frames_gen = filter->out_gen / filter->channels ;	return SRC_ERR_NO_ERROR ;} /* sinc_process *//*----------------------------------------------------------------------------------------*/static voidprepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len){	int len = 0 ;	if (filter->b_real_end >= 0)		return ;	/* This doesn't make sense, so return. */	if (filter->b_current == 0)	{	/* Initial state. Set up zeros at the start of the buffer and		** then load new data after that.		*/		len = filter->b_len - 2 * half_filter_chan_len ;		filter->b_current = filter->b_end = half_filter_chan_len ;		}	else if (filter->b_end + half_filter_chan_len + filter->channels < filter->b_len)	{	/*  Load data at current end position. */		len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;		}	else	{	/* Move data at end of buffer back to the start of the buffer. */		len = filter->b_end - filter->b_current ;		memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,						(half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;		filter->b_current = half_filter_chan_len ;		filter->b_end = filter->b_current + len ;		/* Now load data at current end of buffer. */		len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;		} ;	len = MIN (filter->in_count - filter->in_used, len) ;	len -= (len % filter->channels) ;	memcpy (filter->buffer + filter->b_end, data->data_in + filter->in_used,						len * sizeof (filter->buffer [0])) ;	filter->b_end += len ;	filter->in_used += len ;	if (filter->in_used == filter->in_count &&			filter->b_end - filter->b_current < 2 * half_filter_chan_len && data->end_of_input)	{	/* Handle the case where all data in the current buffer has been		** consumed and this is the last buffer.		*/		if (filter->b_len - filter->b_end < half_filter_chan_len + 5)		{	/* If necessary, move data down to the start of the buffer. */			len = filter->b_end - filter->b_current ;			memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,							(half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;			filter->b_current = half_filter_chan_len ;			filter->b_end = filter->b_current + len ;			} ;		filter->b_real_end = filter->b_end ;		len = half_filter_chan_len + 5 ;		memset (filter->buffer + filter->b_end, 0, len * sizeof (filter->buffer [0])) ;		filter->b_end += len ;		} ;	return ;} /* prepare_data */static doublecalc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch){	double		fraction, left, right, icoeff ;	increment_t	filter_index, max_filter_index ;	int			data_index, coeff_count, indx ;	/* Convert input parameters into fixed point. */	max_filter_index = INT_TO_FP (filter->coeff_half_len) ;	/* First apply the left half of the filter. */	filter_index = start_filter_index ;	coeff_count = (max_filter_index - filter_index) / increment ;	filter_index = filter_index + coeff_count * increment ;	data_index = filter->b_current - filter->channels * coeff_count ;	left = 0.0 ;	do	{	fraction = FP_TO_DOUBLE (filter_index) ;		indx = FP_TO_INT (filter_index) ;		icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;		left += icoeff * filter->buffer [data_index + ch] ;		filter_index -= increment ;		data_index = data_index + filter->channels ;		}	while (filter_index >= MAKE_INCREMENT_T (0)) ;	/* Now apply the right half of the filter. */	filter_index = increment - start_filter_index ;	coeff_count = (max_filter_index - filter_index) / increment ;	filter_index = filter_index + coeff_count * increment ;	data_index = filter->b_current + filter->channels * (1 + coeff_count) ;	right = 0.0 ;	do	{	fraction = FP_TO_DOUBLE (filter_index) ;		indx = FP_TO_INT (filter_index) ;		icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;		right += icoeff * filter->buffer [data_index + ch] ;		filter_index -= increment ;		data_index = data_index - filter->channels ;		}	while (filter_index > MAKE_INCREMENT_T (0)) ;	return (left + right) ;} /* calc_output *//*** Do not edit or modify anything in this comment block.** The arch-tag line is a file identity tag for the GNU Arch ** revision control system.**** arch-tag: db8efe06-2fbd-487e-be8f-bfc01e68c19f*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -