⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lrn_directq.c

📁 这个代码是policy iteration算法关于强化学习的. 请您用winzip 解压缩
💻 C
字号:


#ifdef PGRL_NO_FA

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <float.h>


#include "lrn_DirectQ.h"
#include "gaussian.h"
#include "misc.h"

int Episodes_Per_Parameter_Update;
int Max_Num_Grad_Calc;
int Update_Policy_Parameters = 0;

extern int **modes_visited;
extern int Mode_Execute;
extern int Step_To_Execute_Mode;

double **dpdc_t, **dpdv_t, *wrk;
double **drhodc, **drhodv;

double **Q,****dpdc, ****dpdv;

double V_for_Policy = 0.0;

extern int dim;
extern int num_of_gaussians;

#ifdef GRAPHICS
extern int Update_Boundaries;
#endif

int Num_of_Grad_Calculations = 0;

void Initialize_PGRL_DirectQ(void)
{
	char error_text[256];
	FILE *fp;
	int i_tmp,i,j;

	if ((fp = fopen("PGRL_DirectQ.ini", "r")) == NULL)
    {
		sprintf(error_text, "Couldn't open \"%s\"\n", "PGRL_DirectQ.ini");
		My_Error(error_text);
    }
	
	if (fscanf(fp, "%d", &(i_tmp) ) != 1)
	{
		sprintf(error_text,
			"Initialize_Learning_parameters: cannot read Episodes_Per_Parameter_Update\n");
		My_Error(error_text);
	}
	skiptoend(fp);
	Episodes_Per_Parameter_Update = i_tmp;


	if (fscanf(fp, "%d", &(i_tmp) ) != 1)
	{
		sprintf(error_text,
			"Initialize_Learning_parameters: cannot read Max_Num_Grad_Calc\n");
		My_Error(error_text);
	}
	skiptoend(fp);
	Max_Num_Grad_Calc = i_tmp;
	

	fclose(fp);
	

	// the reward file
#ifdef BIAS
	if ((fp = fopen("rb.txt", "w")) == NULL)
	{
		sprintf(error_text, "Couldn't open \"%s\"\n", "rb.txt");
		My_Error(error_text);
	}
	fclose(fp);
	if ((fp = fopen("gb.txt", "w")) == NULL)
	{
		sprintf(error_text, "Couldn't open \"%s\"\n", "g.txt");
		My_Error(error_text);
	}
	fclose(fp);
#else
	if ((fp = fopen("r.txt", "w")) == NULL)
	{
		sprintf(error_text, "Couldn't open \"%s\"\n", "r.txt");
		My_Error(error_text);
	}
	fclose(fp);
	if ((fp = fopen("g.txt", "w")) == NULL)
	{
		sprintf(error_text, "Couldn't open \"%s\"\n", "g.txt");
		My_Error(error_text);
	}
	fclose(fp);
#endif
	//
	
	dpdc_t = (double **)My_Malloc((long)dim  * sizeof(double*));
	dpdv_t = (double **)My_Malloc((long)dim  * sizeof(double*));
	for ( i = 0; i < dim; i++ )
	{
		dpdc_t[i] = (double *)My_Malloc((long)num_of_gaussians  * sizeof(double));
		dpdv_t[i] = (double *)My_Malloc((long)num_of_gaussians  * sizeof(double));
	}

	wrk = (double *)My_Malloc((long)dim  * sizeof(double));
	
	drhodc = (double **)My_Malloc((long)num_of_gaussians  * sizeof(double*));
	drhodv = (double **)My_Malloc((long)num_of_gaussians  * sizeof(double*));
	for ( i = 0; i < num_of_gaussians; i++ )
	{
		drhodc[i] = (double *)My_Malloc((long)dim  * sizeof(double));
		drhodv[i] = (double *)My_Malloc((long)dim  * sizeof(double));
		for ( j = 0; j < dim; j++ )
		{
			drhodc[i][j] = 0.0;
			drhodv[i][j] = 0.0;
		}
	}
	
}


void PGRL_DirectQ(int steps,
				  double **s, double **g, 
				  double **cen, double **var,
				  int *mode, double alpha, double gam,
				  double *r)
{
	double g_tot;
	int i,j,k,q;

	if ( Update_Policy_Parameters == 0 )
	{
		Q = (double **)My_Malloc((long)steps  * sizeof(double*));
		dpdc = (double ****)My_Malloc((long)steps  * sizeof(double***));
		dpdv = (double ****)My_Malloc((long)steps  * sizeof(double***));
		for ( k = 0; k < steps; k++ )
		{
			Q[k] = (double *)My_Malloc((long)num_of_gaussians  * sizeof(double));

			dpdc[k] = (double ***)My_Malloc((long)num_of_gaussians  * sizeof(double**));
			dpdv[k] = (double ***)My_Malloc((long)num_of_gaussians  * sizeof(double**));
			for ( i = 0; i < num_of_gaussians; i++ )
			{
				Q[k][i] = 0.0;
				dpdc[k][i] = (double **)My_Malloc((long)dim  * sizeof(double*));
				dpdv[k][i] = (double **)My_Malloc((long)dim  * sizeof(double*));
				for ( j = 0; j < dim; j++ )
				{
					dpdc[k][i][j] = (double *)My_Malloc((long)num_of_gaussians  * sizeof(double));
					dpdv[k][i][j] = (double *)My_Malloc((long)num_of_gaussians  * sizeof(double));
					for ( q = 0; q < num_of_gaussians; q++ )
					{
						dpdc[k][i][j][q] = 0.0;
						dpdv[k][i][j][q] = 0.0;
					}
				}
			}
		}
		
		
		for ( i = 1; i < steps; i++ )
		{
			Q[i][mode[i]] = 0.0;
			for ( j = i; j < steps; j++ )
			{
				Q[i][mode[i]] = Q[i][mode[i]] + r[j] * pow(gam,(double)(j-i));
			}
		}

		V_for_Policy = Q[1][mode[1]];
		
		{ // 
			char error_text[256];
			FILE *fp;
			
#ifdef BIAS
			if ((fp = fopen("rb.txt", "a")) == NULL)
			{
				sprintf(error_text, "Couldn't open \"%s\"\n", "rb.txt");
				My_Error(error_text);
			}
#else
			if ((fp = fopen("r.txt", "a")) == NULL)
			{
				sprintf(error_text, "Couldn't open \"%s\"\n", "r.txt");
				My_Error(error_text);
			}
#endif
			fprintf(fp,"%g\n",V_for_Policy);
			fclose(fp);
			printf("%d: %g\n",Num_of_Grad_Calculations,V_for_Policy);
		}
		
		for ( i = 1; i < steps; i++ )
		{
			g_tot = 0.0;
			for ( j = 0; j < num_of_gaussians; j++ )
			{
				g_tot = g_tot + g[i][j];
			}


			for ( k = 0; k < num_of_gaussians; k++ )
			{
				
				avaluate_total_gradient(dim, s[i], cen[k], var[k], 
					dpdc_t, dpdv_t, wrk, k, g[i], num_of_gaussians, g_tot);
				
				for ( j = 0; j < dim; j++ )
				{
					for ( q = 0; q < num_of_gaussians; q++ )
					{
						dpdc[i][k][j][q] = dpdc_t[j][q];
						dpdv[i][k][j][q] = dpdv_t[j][q];
					}
				}
			}
		}
				
		Episodes_Per_Parameter_Update = steps - 1;

		modes_visited = (int **)My_Malloc((long)Episodes_Per_Parameter_Update  * sizeof(int*));
		for ( i = 1; i < Episodes_Per_Parameter_Update; i++ )
		{
			modes_visited[i] = (int *)My_Malloc((long)num_of_gaussians  * sizeof(int));
			for ( j = 0; j < num_of_gaussians; j++ )
			{
				modes_visited[i][j] = 0;
			}
			modes_visited[i][mode[i]] = 1;
		}
		
		Update_Policy_Parameters++;
		Step_To_Execute_Mode = 1;
		for ( i = 0; i < num_of_gaussians; i++ )
		{
			if ( modes_visited[Step_To_Execute_Mode][i] == 0 )
			{
				Mode_Execute = i;
				//modes_visited[Step_To_Execute_Mode][i] = 1;
				break;
			}
		}
	}
	else if ( steps <= Step_To_Execute_Mode )
	{ // update the gradient
		Update_Policy_Parameters = Episodes_Per_Parameter_Update;
	}
	else
	{
		double Q_tmp;
		int inr_step;

		Q_tmp = 0.0;
		for ( j = Step_To_Execute_Mode; j < steps; j++ )
		{
			Q_tmp = Q_tmp + r[j] * pow(gam,(double)(j-Step_To_Execute_Mode));
		}
		
		i = Step_To_Execute_Mode;
		Q[i][mode[i]] = Q_tmp;

		if ( Q[i][mode[i]] == 0.0 )
		{
			printf("Q_tmp[%d][%d] = %g\n",i,mode[i],Q[i][mode[i]]);
		}

		g_tot = 0.0;
		for ( j = 0; j < num_of_gaussians; j++ )
		{
			g_tot = g_tot + g[i][j];
		}
		

		avaluate_total_gradient(dim, s[i], cen[mode[i]], var[mode[i]], 
			dpdc_t, dpdv_t, wrk, mode[i], g[i], num_of_gaussians, g_tot);
		
		for ( j = 0; j < dim; j++ )
		{
			for ( q = 0; q < num_of_gaussians; q++ )
			{
				dpdc[i][mode[i]][j][q] = dpdc_t[j][q];
				dpdv[i][mode[i]][j][q] = dpdv_t[j][q];
			}
		}
		
		modes_visited[Step_To_Execute_Mode][mode[i]] = 1;
		
		inr_step = 1;
		for ( i = 0; i < num_of_gaussians; i++ )
		{
			if ( modes_visited[Step_To_Execute_Mode][i] == 0 )
			{
				inr_step = 0;
				Mode_Execute = i;
				//modes_visited[Step_To_Execute_Mode][i] = 1;
				break;
			}
		}
		if ( inr_step == 1)
		{
			Step_To_Execute_Mode++;
			Update_Policy_Parameters++;
			if ( Update_Policy_Parameters < Episodes_Per_Parameter_Update )
			{
				for ( i = 0; i < num_of_gaussians; i++ )
				{
					if ( modes_visited[Step_To_Execute_Mode][i] == 0 )
					{
						inr_step = 0;
						Mode_Execute = i;
						//modes_visited[Step_To_Execute_Mode][i] = 1;
						break;
					}
				}
			}
		}
	}
	
	
	if ( Episodes_Per_Parameter_Update <= Update_Policy_Parameters )
	{
		double tdc=0.0, tdv=0.0;
		int cont_grad,n,cnt;

		for ( j = 0; j < num_of_gaussians; j++ )
		{
			for ( i = 0; i < dim; i++ )
			{
				drhodc[j][i] = 0.0;
				drhodv[j][i] = 0.0;
			}
		}


#ifdef BIAS
		{
			double t1;
			for ( k = 1; k < Episodes_Per_Parameter_Update; k++ )
			{
				t1 = 0.0;
				for ( n = 0; n < num_of_gaussians; n++ )
				{
					t1 = t1 + Q[k][n];
				}
				t1 = t1 / (double)num_of_gaussians;
				for ( n = 0; n < num_of_gaussians; n++ )
				{
					Q[k][n] = Q[k][n] - t1;
				}
			}
		}
#endif
		

		cnt = 0;
		cont_grad = 1;
		for ( k = 1; k < Episodes_Per_Parameter_Update && (cont_grad == 1); k++ )
		{
			for ( j = 0; j < num_of_gaussians && (cont_grad == 1); j++ )
			{
				cont_grad = modes_visited[k][j];
			}
			cnt++;
			for ( i = 0; i < dim && (cont_grad == 1); i++ )
			{
				for ( j = 0; j < num_of_gaussians && (cont_grad == 1); j++ )
				{
					for ( n = 0; n < num_of_gaussians; n++ )
					{
						drhodc[j][i] = drhodc[j][i] + Q[k][n] * dpdc[k][j][i][n];
						drhodv[j][i] = drhodv[j][i] + Q[k][n] * dpdv[k][j][i][n];
					}
				}
			}
		}
		
		for ( j = 0; j < num_of_gaussians; j++ )
		{
			for ( i = 0; i < dim; i++ )
			{
				drhodc[j][i] = drhodc[j][i] / cnt;
				drhodv[j][i] = drhodv[j][i] / cnt;
			}
		}
		
		
#ifdef UPDATE_POLICY_PARAMETERS
		{
			double tmax;
		{ // 
			char error_text[256];
			FILE *fp;
			
#ifdef BIAS
			if ((fp = fopen("gb.txt", "a")) == NULL)
			{
				sprintf(error_text, "Couldn't open \"%s\"\n", "gb.txt");
				My_Error(error_text);
			}
#else
			if ((fp = fopen("g.txt", "a")) == NULL)
			{
				sprintf(error_text, "Couldn't open \"%s\"\n", "g.txt");
				My_Error(error_text);
			}
#endif
			for ( j = 0; j < num_of_gaussians; j++ )
			{
				for ( i = 0; i < dim; i++ )
				{
					fprintf(fp,"%g\n",drhodc[j][i]);
					fprintf(fp,"%g\n",drhodv[j][i]);
				}
			}
			fclose(fp);
		}
			tdc = 0.0;
			tdv = 0.0;
			for ( j = 0; j < num_of_gaussians; j++ )
			{
				for ( i = 0; i < dim; i++ )
				{
					if ( _isnan(drhodc[j][i]))
					{
						My_Error("Not a Number!");
					}
					if ( _isnan(drhodv[j][i]))
					{
						My_Error("Not a Number!");
					}
					if ( tdc < fabs(drhodc[j][i]) )
					{
						tdc = fabs(drhodc[j][i]);
					}
					if ( tdv < fabs(drhodv[j][i]) )
					{
						tdv = fabs(drhodv[j][i]);
					}
				}
			}
			
			if ( tdc > tdv )
			{
				tmax = tdc;
			}
			else
			{
				tmax = tdv;
			}

			if ( _isnan(tmax))
			{
				My_Error("Not a Number!");
			}
			
			
			for ( j = 0; j < num_of_gaussians; j++ )
			{
				for ( i = 0; i < dim; i++ )
				{
					if ( _isnan(drhodc[j][i]))
					{
						My_Error("Not a Number!");
					}
					if ( _isnan(drhodv[j][i]))
					{
						My_Error("Not a Number!");
					}
					drhodc[j][i] = drhodc[j][i] / tmax;
					if ( _isnan(drhodc[j][i]))
					{
						My_Error("Not a Number!");
					}
					drhodv[j][i] = drhodv[j][i] / tmax;
					if ( _isnan(drhodv[j][i]))
					{
						My_Error("Not a Number!");
					}
				}
			}
		}
		
#ifdef GRAPHICS
		Update_Boundaries = 1;
#endif
		for ( j = 0; j < num_of_gaussians; j++ )
		{
			for ( i = 0; i < dim; i++ )
			{
				cen[j][i] = cen[j][i] + alpha * drhodc[j][i];
				var[j][i] = var[j][i] + alpha * drhodv[j][i];
				if ( var[j][i] < 0.01)
					var[j][i] = 0.01;
			}
		}
#else
		{ // 
			char error_text[256];
			FILE *fp;
			
#ifdef BIAS
			if ((fp = fopen("gb.txt", "a")) == NULL)
			{
				sprintf(error_text, "Couldn't open \"%s\"\n", "gb.txt");
				My_Error(error_text);
			}
#else
			if ((fp = fopen("g.txt", "a")) == NULL)
			{
				sprintf(error_text, "Couldn't open \"%s\"\n", "g.txt");
				My_Error(error_text);
			}
#endif
			for ( j = 0; j < num_of_gaussians; j++ )
			{
				for ( i = 0; i < dim; i++ )
				{
					fprintf(fp,"%g %g ",drhodc[j][i],drhodv[j][i]);
				}
			}
			fprintf(fp,"\n");
			fclose(fp);
		}
#endif
		

		for ( k = 0; k < Episodes_Per_Parameter_Update+1; k++ )
		{
			free(Q[k]);

			for ( i = 0; i < num_of_gaussians; i++ )
			{
				for ( j = 0; j < dim; j++ )
				{
					free(dpdc[k][i][j]);
					free(dpdv[k][i][j]);
				}
				free(dpdc[k][i]);
				free(dpdv[k][i]);
			}
			free(dpdc[k]);
			free(dpdv[k]);
		}
		free(Q);
		free(dpdc);
		free(dpdv);

		for ( i = 1; i < Episodes_Per_Parameter_Update; i++ )
		{
			free(modes_visited[i]);
		}
		free(modes_visited);

		Update_Policy_Parameters = 0;
		Step_To_Execute_Mode = -1;
		Mode_Execute = -1;

#ifdef UPDATE_POLICY_PARAMETERS
		Reset_Random_Seed_For_Paths();
#endif
		Num_of_Grad_Calculations++;
		if ( Num_of_Grad_Calculations > Max_Num_Grad_Calc )
		{
			exit(1);
		}
	}

}

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -