📄 _itowa.c
字号:
/* Internal function for converting integers to ASCII. Copyright (C) 1994,1995,1996,1999,2000,2002 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Torbjorn Granlund <tege@matematik.su.se> and Ulrich Drepper <drepper@gnu.org>. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */#include <gmp-mparam.h>#include <gmp.h>#include <stdlib/gmp-impl.h>#include <stdlib/longlong.h>#include "_itowa.h"/* Canonize environment. For some architectures not all values might be defined in the GMP header files. */#ifndef UMUL_TIME# define UMUL_TIME 1#endif#ifndef UDIV_TIME# define UDIV_TIME 3#endif/* Control memory layout. */#ifdef PACK# undef PACK# define PACK __attribute__ ((packed))#else# define PACK#endif/* Declare local types. */struct base_table_t{#if (UDIV_TIME > 2 * UMUL_TIME) mp_limb_t base_multiplier;#endif char flag; char post_shift;#if BITS_PER_MP_LIMB == 32 struct { char normalization_steps; char ndigits; mp_limb_t base PACK;#if UDIV_TIME > 2 * UMUL_TIME mp_limb_t base_ninv PACK;#endif } big;#endif};/* To reduce the memory needed we include some fields of the tables only conditionally. */#if UDIV_TIME > 2 * UMUL_TIME# define SEL1(X) X,# define SEL2(X) ,X#else# define SEL1(X)# define SEL2(X)#endif/* Factor table for the different bases. */extern const struct base_table_t _itoa_base_table[] attribute_hidden;/* Lower-case digits. */extern const wchar_t _itowa_lower_digits[] attribute_hidden;/* Upper-case digits. */extern const wchar_t _itowa_upper_digits[] attribute_hidden;wchar_t *_itowa (value, buflim, base, upper_case) unsigned long long int value; wchar_t *buflim; unsigned int base; int upper_case;{ const wchar_t *digits = (upper_case ? _itowa_upper_digits : _itowa_lower_digits); wchar_t *bp = buflim; const struct base_table_t *brec = &_itoa_base_table[base - 2]; switch (base) {#define RUN_2N(BITS) \ do \ { \ /* `unsigned long long int' always has 64 bits. */ \ mp_limb_t work_hi = value >> (64 - BITS_PER_MP_LIMB); \ \ if (BITS_PER_MP_LIMB == 32) \ { \ if (work_hi != 0) \ { \ mp_limb_t work_lo; \ int cnt; \ \ work_lo = value & 0xfffffffful; \ for (cnt = BITS_PER_MP_LIMB / BITS; cnt > 0; --cnt) \ { \ *--bp = digits[work_lo & ((1ul << BITS) - 1)]; \ work_lo >>= BITS; \ } \ if (BITS_PER_MP_LIMB % BITS != 0) \ { \ work_lo \ |= ((work_hi \ & ((1 << (BITS - BITS_PER_MP_LIMB%BITS)) \ - 1)) \ << BITS_PER_MP_LIMB % BITS); \ work_hi >>= BITS - BITS_PER_MP_LIMB % BITS; \ if (work_hi == 0) \ work_hi = work_lo; \ else \ *--bp = digits[work_lo]; \ } \ } \ else \ work_hi = value & 0xfffffffful; \ } \ do \ { \ *--bp = digits[work_hi & ((1 << BITS) - 1)]; \ work_hi >>= BITS; \ } \ while (work_hi != 0); \ } \ while (0) case 8: RUN_2N (3); break; case 16: RUN_2N (4); break; default: {#if BITS_PER_MP_LIMB == 64 mp_limb_t base_multiplier = brec->base_multiplier; if (brec->flag) while (value != 0) { mp_limb_t quo, rem, x, dummy; umul_ppmm (x, dummy, value, base_multiplier); quo = (x + ((value - x) >> 1)) >> (brec->post_shift - 1); rem = value - quo * base; *--bp = digits[rem]; value = quo; } else while (value != 0) { mp_limb_t quo, rem, x, dummy; umul_ppmm (x, dummy, value, base_multiplier); quo = x >> brec->post_shift; rem = value - quo * base; *--bp = digits[rem]; value = quo; }#endif#if BITS_PER_MP_LIMB == 32 mp_limb_t t[3]; int n; /* First convert x0 to 1-3 words in base s->big.base. Optimize for frequent cases of 32 bit numbers. */ if ((mp_limb_t) (value >> 32) >= 1) {#if UDIV_TIME > 2 * UMUL_TIME || UDIV_NEEDS_NORMALIZATION int big_normalization_steps = brec->big.normalization_steps; mp_limb_t big_base_norm = brec->big.base << big_normalization_steps;#endif if ((mp_limb_t) (value >> 32) >= brec->big.base) { mp_limb_t x1hi, x1lo, r; /* If you want to optimize this, take advantage of that the quotient in the first udiv_qrnnd will always be very small. It might be faster just to subtract in a tight loop. */#if UDIV_TIME > 2 * UMUL_TIME mp_limb_t x, xh, xl; if (big_normalization_steps == 0) xh = 0; else xh = (mp_limb_t) (value >> (64 - big_normalization_steps)); xl = (mp_limb_t) (value >> (32 - big_normalization_steps)); udiv_qrnnd_preinv (x1hi, r, xh, xl, big_base_norm, brec->big.base_ninv); xl = ((mp_limb_t) value) << big_normalization_steps; udiv_qrnnd_preinv (x1lo, x, r, xl, big_base_norm, brec->big.base_ninv); t[2] = x >> big_normalization_steps; if (big_normalization_steps == 0) xh = x1hi; else xh = ((x1hi << big_normalization_steps) | (x1lo >> (32 - big_normalization_steps))); xl = x1lo << big_normalization_steps; udiv_qrnnd_preinv (t[0], x, xh, xl, big_base_norm, brec->big.base_ninv); t[1] = x >> big_normalization_steps;#elif UDIV_NEEDS_NORMALIZATION mp_limb_t x, xh, xl; if (big_normalization_steps == 0) xh = 0; else xh = (mp_limb_t) (value >> 64 - big_normalization_steps); xl = (mp_limb_t) (value >> 32 - big_normalization_steps); udiv_qrnnd (x1hi, r, xh, xl, big_base_norm); xl = ((mp_limb_t) value) << big_normalization_steps; udiv_qrnnd (x1lo, x, r, xl, big_base_norm); t[2] = x >> big_normalization_steps; if (big_normalization_steps == 0) xh = x1hi; else xh = ((x1hi << big_normalization_steps) | (x1lo >> 32 - big_normalization_steps)); xl = x1lo << big_normalization_steps; udiv_qrnnd (t[0], x, xh, xl, big_base_norm); t[1] = x >> big_normalization_steps;#else udiv_qrnnd (x1hi, r, 0, (mp_limb_t) (value >> 32), brec->big.base); udiv_qrnnd (x1lo, t[2], r, (mp_limb_t) value, brec->big.base); udiv_qrnnd (t[0], t[1], x1hi, x1lo, brec->big.base);#endif n = 3; } else {#if (UDIV_TIME > 2 * UMUL_TIME) mp_limb_t x; value <<= brec->big.normalization_steps; udiv_qrnnd_preinv (t[0], x, (mp_limb_t) (value >> 32), (mp_limb_t) value, big_base_norm, brec->big.base_ninv); t[1] = x >> brec->big.normalization_steps;#elif UDIV_NEEDS_NORMALIZATION mp_limb_t x; value <<= big_normalization_steps; udiv_qrnnd (t[0], x, (mp_limb_t) (value >> 32), (mp_limb_t) value, big_base_norm); t[1] = x >> big_normalization_steps;#else udiv_qrnnd (t[0], t[1], (mp_limb_t) (value >> 32), (mp_limb_t) value, brec->big.base);#endif n = 2; } } else { t[0] = value; n = 1; } /* Convert the 1-3 words in t[], word by word, to ASCII. */ do { mp_limb_t ti = t[--n]; int ndig_for_this_limb = 0;#if UDIV_TIME > 2 * UMUL_TIME mp_limb_t base_multiplier = brec->base_multiplier; if (brec->flag) while (ti != 0) { mp_limb_t quo, rem, x, dummy; umul_ppmm (x, dummy, ti, base_multiplier); quo = (x + ((ti - x) >> 1)) >> (brec->post_shift - 1); rem = ti - quo * base; *--bp = digits[rem]; ti = quo; ++ndig_for_this_limb; } else while (ti != 0) { mp_limb_t quo, rem, x, dummy; umul_ppmm (x, dummy, ti, base_multiplier); quo = x >> brec->post_shift; rem = ti - quo * base; *--bp = digits[rem]; ti = quo; ++ndig_for_this_limb; }#else while (ti != 0) { mp_limb_t quo, rem; quo = ti / base; rem = ti % base; *--bp = digits[rem]; ti = quo; ++ndig_for_this_limb; }#endif /* If this wasn't the most significant word, pad with zeros. */ if (n != 0) while (ndig_for_this_limb < brec->big.ndigits) { *--bp = '0'; ++ndig_for_this_limb; } } while (n != 0);#endif } break; } return bp;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -