📄 44blib.c.bak
字号:
/************************************************
* NAME : 44BLIB.C *
* Version : 17.APR.00 *
************************************************/
#include "..\inc\44b.h"
#include "..\inc\44blib.h"
#include "..\inc\option.h"
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#define STACKSIZE 0xa00 //SVC satck size(do not use user stack)
#define HEAPEND (_ISR_STARTADDRESS-STACKSIZE-0x500) // = 0xc7ff000
extern char Image$$RW$$Limit[];
void *mallocPt=Image$$RW$$Limit;
/************************* SYSTEM *************************/
static int delayLoopCount=400;
void Delay(int time)
// time=0: adjust the Delay function by WatchDog timer.
// time>0: the number of loop time
// 100us resolution.
{
int i,adjust=0;
if(time==0)
{
time=200;
adjust=1;
delayLoopCount=400;
rWTCON=((MCLK/1000000-1)<<8)|(2<<3); // 1M/64,Watch-dog,nRESET,interrupt disable
rWTDAT=0xffff;
rWTCNT=0xffff;
rWTCON=((MCLK/1000000-1)<<8)|(2<<3)|(1<<5); // 1M/64,Watch-dog enable,nRESET,interrupt disable
}
for(;time>0;time--)
for(i=0;i<delayLoopCount;i++);
if(adjust==1)
{
rWTCON=((MCLK/1000000-1)<<8)|(2<<3);
i=0xffff-rWTCNT; // 1count/16us?????????
delayLoopCount=8000000/(i*64); //400*100/(i*64/200)
}
}
/************************* PORTS ****************************/
static int whichUart=0;
void Uart_Init(int mclk,int baud)
{
int i;
if(mclk==0)
mclk=MCLK;
rUFCON0=0x0; //FIFO disable
rUFCON1=0x0;
rUMCON0=0x0;
rUMCON1=0x0;
//UART0
rULCON0=0x3; //Normal,No parity,1 stop,8 bit
// rULCON0=0x7; //Normal,No parity,2 stop,8 bit
rUCON0=0x245; //rx=edge,tx=level,disable timeout int.,enable rx error int.,normal,interrupt or polling
rUBRDIV0=( (int)(mclk/16./baud + 0.5) -1 );
//UART1
// rULCON1=0x7; //Normal,No parity,2 stop,8 bit
rULCON1=0x3;
rUCON1=0x245;
rUBRDIV1=( (int)(mclk/16./baud + 0.5) -1 );
for(i=0;i<100;i++);
}
void Uart_Select(int ch)
{
whichUart=ch;
}
void Uart_TxEmpty(int ch)
{
if(ch==0)
while(!(rUTRSTAT0 & 0x4)); //wait until tx shifter is empty.
else
while(!(rUTRSTAT1 & 0x4)); //wait until tx shifter is empty.
}
char Uart_Getch(void)
{
if(whichUart==0)
{
while(!(rUTRSTAT0 & 0x1)); //Receive data read
return RdURXH0();
}
else
{
while(!(rUTRSTAT1 & 0x1)); //Receive data ready
return rURXH1;
}
}
char Uart_GetKey(void)
{
if(whichUart==0)
{
if(rUTRSTAT0 & 0x1) //Receive data ready
return RdURXH0();
else
return 0;
}
else
{
if(rUTRSTAT1 & 0x1) //Receive data ready
return rURXH1;
else
return 0;
}
}
void Uart_GetString(char *string)
{
char *string2=string;
char c;
while((c=Uart_Getch())!='\r')
{
if(c=='\b')
{
if( (int)string2 < (int)string )
{
Uart_Printf("\b \b");
string--;
}
}
else
{
*string++=c;
Uart_SendByte(c);
}
}
*string='\0';
Uart_SendByte('\n');
}
int Uart_GetIntNum(void)
{
char str[30];
char *string=str;
int base=10;
int minus=0;
int lastIndex;
int result=0;
int i;
Uart_GetString(string);
if(string[0]=='-')
{
minus=1;
string++;
}
if(string[0]=='0' && (string[1]=='x' || string[1]=='X'))
{
base=16;
string+=2;
}
lastIndex=strlen(string)-1;
if( string[lastIndex]=='h' || string[lastIndex]=='H' )
{
base=16;
string[lastIndex]=0;
lastIndex--;
}
if(base==10)
{
result=atoi(string);
result=minus ? (-1*result):result;
}
else
{
for(i=0;i<=lastIndex;i++)
{
if(isalpha(string[i]))
{
if(isupper(string[i]))
result=(result<<4)+string[i]-'A'+10;
else
result=(result<<4)+string[i]-'a'+10;
}
else
{
result=(result<<4)+string[i]-'0';
}
}
result=minus ? (-1*result):result;
}
return result;
}
void Uart_SendByte(int data)
{
int data1;
data1=data;
if(whichUart==0)
{
if(data=='\n')
{
while(!(rUTRSTAT0 & 0x2));
Delay(10); //because the slow response of hyper_terminal
WrUTXH0('\r');
};
while(!(rUTRSTAT0 & 0x2)); //Wait until THR is empty.
Delay(10);
WrUTXH0(data1);
}
else
{
if(data=='\n')
{
while(!(rUTRSTAT1 & 0x2));
Delay(10); //because the slow response of hyper_terminal
rUTXH1='\r';
}
while(!(rUTRSTAT1 & 0x2)); //Wait until THR is empty.
Delay(10);
rUTXH1=data1;
}
}
void Uart_SendString(char *pt)
{
while(*pt)
Uart_SendByte(*pt++);
}
//if you don't use vsprintf(), the code size is reduced very much.
void Uart_Printf(char *fmt,...)
{
va_list ap;
char string[256];
va_start(ap,fmt);
vsprintf(string,fmt,ap);
Uart_SendString(string);
va_end(ap);
}
/******************** S3C44B0X EV. BOARD LED **********************/
// -g-- a: data0 b: data1
// a/_b_/f c: data2 d: data3 dp: data4
// c/_d_/e dp e: data5 f: data6 g: data7
void Led_Display(int LedStatus)
{
if((LedStatus&0x01)==0x01) //PE7状态设置
{ rPDATC=rPDATC&0xfffD;
Delay(50);
}
else
{ rPDATC=rPDATC|0x02;
Delay(50);
}
if((LedStatus&0x02)==0x02) //PE6状态设置
{
rPDATC=rPDATC&0xfffB;
Delay(50);
}
else
{
rPDATC=rPDATC|0x04;
Delay(50);
}
if((LedStatus&0x04)==0x04) //PE5状态设置
{
rPDATC=rPDATC&0xfff7;
Delay(50);
}
else
{
rPDATC=rPDATC|0x08;
Delay(50);
}
//if((LedStatus&0x08)==0x08) //PE4状态设置
// rPDATC=rPDATC&0x1ef;
//else
// rPDATC=rPDATC|0x10;
// Uart_Printf("\n keyboard is %d\n\n",data);
}
/************************* PLL ********************************/
void ChangePllValue(int mdiv,int pdiv,int sdiv)
{
rPLLCON=(mdiv<<12)|(pdiv<<4)|sdiv;
}
/************************* General Library **********************/
void * malloc(unsigned nbyte)
{
void *returnPt=mallocPt;
mallocPt= (int *)mallocPt+nbyte/4+((nbyte%4)>0); //to align 4byte
if( (int)mallocPt > HEAPEND )
{
mallocPt=returnPt;
return NULL;
}
return returnPt;
}
void free(void *pt)
{
mallocPt=pt;
}
void Cache_Flush(void)
{
int i,saveSyscfg;
saveSyscfg=rSYSCFG;
rSYSCFG=SYSCFG_0KB;
for(i=0x10004000;i<0x10004800;i+=16)
{
*((int *)i)=0x0;
}
rSYSCFG=saveSyscfg;
}
/************************* Timer ********************************/
void Timer_Start(int divider) //0:16us,1:32us 2:64us 3:128us
{
rWTCON=((MCLK/1000000-1)<<8)|(divider<<3);
rWTDAT=0xffff;
rWTCNT=0xffff;
// 1/16/(65+1),nRESET & interrupt disable
rWTCON=((MCLK/1000000-1)<<8)|(divider<<3)|(1<<5);
}
int Timer_Stop(void)
{
// int i;
rWTCON=((MCLK/1000000-1)<<8);
return (0xffff-rWTCNT);
}
/****************************************************************************
【功能说明】蜂鸣器鸣叫time个100us
****************************************************************************/
void Beep(unsigned int time)
{
rPDATE = (rPDATE | 0x08);
Delay(time); //延时若干个100us
rPDATE = (rPDATE & 0x1f7);
}
//***************************************************************************
/****************************************************************************
【功能说明】定时器初始化,让PE7、6、5、4输出PWM信号
****************************************************************************/
void Timer_Pwm(void)
{
rPCONE = 0xaa6b;
//PE8-P0的引脚功能依次为:ENDIAN TOUT4、3、2、1、0 RXD0 TXD0 FOUT
rPUPE |= 0xf0; //TOUT4、3、2、1、0设置成不上拉,其他引脚上拉
rTCFG0 = 0x23f3f3f; //死区长度为2; Prescaler0/1/2=3f,3f,3f
//定时器输入时钟频率计算公式 = MCLK/{prescaler+1}/{divider value}
rTCFG1 = 0x0; // Interrupt; Devider value = 1/2
//定时器时钟 = (MCLK/prescaler+1)/2
rTCNTB0 = 20000; //决定TOUT 0引脚PWM输出信号的频率
rTCNTB1 = 32000; //决定TOUT 1引脚PWM输出信号的频率
rTCNTB2 = 43000; //决定TOUT 2引脚PWM输出信号的频率
rTCNTB3 = 53000; //决定TOUT 3引脚PWM输出信号的频率
rTCNTB4 = 64000; //决定TOUT 4引脚PWM输出信号的频率
rTCMPB0 = 12000; //决定TOUT 0引脚PWM输出高电平的信号宽度(rTCMPB0<rTCNTB0)
rTCMPB1 = 18000; //决定TOUT 1引脚PWM输出高电平的信号宽度(rTCMPB1<rTCNTB1)
rTCMPB2 = 25000; //决定TOUT 2引脚PWM输出高电平的信号宽度(rTCMPB2<rTCNTB2)
rTCMPB3 = 28000; //决定TOUT 3引脚PWM输出高电平的信号宽度(rTCMPB3<rTCNTB3)
rTCMPB4 = 36000; //决定TOUT 4引脚PWM输出高电平的信号宽度(rTCMPB4<rTCNTB4)
// rTCON = 0xaaaa0a; //自动重装,输出取反关闭,更新TCNTBn、TCMPBn,死区控制器关闭
// rTCON = 0x999909; //开始PWM输出(不使用死区控制器,上升沿会非常陡峭,是标准矩形波)
// rTCON = 0xeeee0e; //自动重装,输出取反打开,更新TCNTBn、TCMPBn,死区控制器关闭
// rTCON = 0xdddd0d; //开始PWM输出(不使用死区控制器,上升沿会非常陡峭,是标准矩形波)
// rTCON = 0xaaaa1a; //自动重装,输出取反关闭,更新TCNTBn、TCMPBn,死区控制器打开
// rTCON = 0x999919; //开始PWM输出(使用死区控制器,上升沿会变得平滑,适用于功率器件控制)
//Delay(7500); //延时若干个100us
rTCON = 0xaaaa0a; //自动重装,输出取反关闭,更新TCNTBn、TCMPBn,死区控制器关闭
rTCON = 0x999900; //停止蜂鸣器的叫声
// rTCON = 0x0; //停止定时器
rPCONE = 0xaa6b; //
//PE8-P0的引脚功能依次为:ENDIAN TOUT4、3、2、1 OUTPUT RXD0 TXD0 FOUT
}
/*****************************************************************************************
<Author:> Sun <Creat time:> 6/21/2005
【功能说明】A/D转换器初始化
******************************************************************************************/
void ADC_Start(void)
{
rCLKCON=0x07ff8; //时钟控制寄存器,使能MCLK作为ADC时钟源
rADCCON=0x1|(0<<2); //启用A/D转换
Delay(100); //等待一定时间使ADC的参考电压稳定下来
rADCPSR=0x20; //设置时钟预分频值
}
/*****************************************************************************************
<Author:> Sun <Creat time:> 6/21/2005
【功能说明】读取A/D转换数值子程序
【参数说明】int ch 采样通道
【返回类型】int 转换结果
******************************************************************************************/
int ReadAdc(int ch)
{
//ADCCON
/* Bit 6 5 4 3 2 1 0 */
/* 0: 正在转换 0;正常模式 输入选择000~111 0:允许读 0:无操作 */
/* 1;转换结束 1:睡眠模式 1:禁止读 1:启动转换 */
int i;
static int prevCh = -1; // 静态变量,第一次进入该程序是,ADC通道一定不为-1,因此必须等待信号建立
// 以后进入该程序时,该语句赋值被忽略,preCh的值为上一次转换的通道号
if(prevCh!=ch) // 若当前的转换通道不是上一次转换的通道,等待信号建立
{
rADCCON=0x0|(ch<<2); //设置采样通道
for(i=0;i<150;i++); //等待最小15us
}
rADCCON=0x1|(ch<<2); //启动A/D转换
while(rADCCON & 0x1); //To avoid The frist FLAG error case
//(The START bit is cleared in one ADC clock)
while(! (rADCCON & 0x40)); //A/D转换是否结束?
for(i=0;i<rADCPSR;i++); //To avoid the second FLAG error case
prevCh=ch; // 将此时的通道号,作为相对下一次转换的上一次转换通道号
//Uart_Printf("ADCPSR=%03xh ",rADCPSR);
return rADCDAT; //返回转换结果
}
/*****************************************************************************************
<Author:> Sun <Creat time:> 6/21/2005
【功能说明】信号调理板控制程序
【参数说明】int parameter 选择138控制的门和采样保持器
【返回类型】0
******************************************************************************************/
int IOCtrl(int parameter)
{
int a; //138输入选择
int b; //138输入选择
int c; //138输入选择
int data;
int temp;
switch ( parameter ) //通过parameter来确定138的三根选择线a,b,c
{
case 1: c=0; b=0; a=0; break; //"DGTL_IN"
case 2: c=0; b=0; a=1; break; //"Switch_IN"
case 3: c=0; b=1; a=0; break; //"DGTL_OUT"
case 4: c=0; b=1; a=1; break; //"Switch_OUT"
case 5: c=1; b=0; a=0; break; //"S/H1"
case 6: c=1; b=0; a=1; break; //"S/H2"
case 7: c=1; b=1; a=0; break; //"S/H3"
case 8: c=1; b=1; a=1; break; //"S/H4"
}
//PORT F GROUP
/* Bit 8 7 6 5 4 3 2 1 0 */
/* IISCLK IISDI IISDO IISLRCK Output Output Output IICSDA IICSCL */
/* 111 111 111 111 00 00 00 11 11 */
//11 1111 1111 1100 0000 1111 b=3FFC0FX;
temp=(rPCONF & 0x3FFC0F);
//PORT F GROUP
/* Bit 8 7 6 5 4 3 2 1 0 */
/* IISCLK IISDI IISDO IISLRCK Output Output Output IICSDA IICSCL */
/* 000 000 000 000 01 01 01 00 00 */
//01 0101 0000 b=150X;
rPCONF=temp+0x150;
//PORT F GROUP
/* Bit 8 7 6 5 4 3 2 1 0 */
/* 1 1 1 1 0 0 0 1 1 */
//111100011b=483d; a(bit2)2^2; b(bit4)2^4; c(bit3)2^3
data=483;
temp=(rPDATF & data);
data=b*16+c*8+a*4;
rPDATF=temp+data;
return 0;
}
/*****************************************************************************************
<Author:> Sun <Creat time:> 6/18/2005
【功能说明】信号调理板数据总线输入输出控制
【参数说明】char IO in & out
【返回类型
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -