📄 phi_lsfr.c
字号:
* polynomials are formed from the error filter polynomial,* Fa(D) = A(D) + D**(N+1) A(D**(-1)) (N+2 terms, symmetric)* Fb(D) = A(D) - D**(N+1) A(D**(-1)) (N+2 terms, anti-symmetric)*/ fa[0] = (float)1.0; for (i = 1, j = np; i < na; ++i, --j) fa[i] = pc[i] + pc[j]; fb[0] = (float)1.0; for (i = 1, j = np; i < nb; ++i, --j) fb[i] = pc[i] - pc[j];/** N even, Fa(D) includes a factor 1+D,* Fb(D) includes a factor 1-D* N odd, Fb(D) includes a factor 1-D**2* Divide out these factors, leaving even order symmetric polynomials, M is the* total number of terms and Nc is the number of unique terms,** N polynomial M Nc=(M+1)/2* even, Ga(D) = F1(D)/(1+D) N+1 N/2+1* Gb(D) = F2(D)/(1-D) N+1 N/2+1* odd, Ga(D) = F1(D) N+2 (N+1)/2+1* Gb(D) = F2(D)/(1-D**2) N (N+1)/2*/ if (odd) { for (i = 2; i < nb; ++i) fb[i] = fb[i] + fb[i-2]; } else { for (i = 1; i < na; ++i) { fa[i] = fa[i] - fa[i-1]; fb[i] = fb[i] + fb[i-1]; } }/** To look for roots on the unit circle, Ga(D) and Gb(D) are evaluated for* D=exp(jw). Since Gz(D) and Gb(D) are symmetric, they can be expressed in* terms of a series in cos(nw) for D on the unit circle. Since M is odd and* D=exp(jw)** M-1 n * Ga(D) = SUM fa(n) D (symmetric, fa(n) = fa(M-1-n))* n=0* Mh-1* = exp(j Mh w) [ f1(Mh) + 2 SUM fa(n) cos((Mh-n)w) ]* n=0* Mh* = exp(j Mh w) SUM ta(n) cos(nw) ,* n=0** where Mh=(M-1)/2=Nc-1. The Nc=Mh+1 coefficients ta(n) are defined as** ta(n) = fa(Nc-1) , n=0,* = 2 fa(Nc-1-n) , n=1,...,Nc-1.* The next step is to identify cos(nw) with the Chebyshev polynomial T(n,x).* The Chebyshev polynomials satisfy the relationship T(n,cos(w)) = cos(nw).* Omitting the exponential delay term, the series expansion in terms of* Chebyshev polynomials is** Nc-1* Ta(x) = SUM ta(n) T(n,x)* n=0** The domain of Ta(x) is -1 < x < +1. For a given root of Ta(x), say x0,* the corresponding position of the root of Fa(D) on the unit circle is* exp(j arccos(x0)).*/ ta[0] = fa[na-1]; for (i = 1, j = na - 2; i < na; ++i, --j) ta[i] = (float)2.0 * fa[j]; tb[0] = fb[nb-1]; for (i = 1, j = nb - 2; i < nb; ++i, --j) tb[i] = (float)2.0 * fb[j];/** To find the roots, we sample the polynomials Ta(x) and Tb(x) looking for* sign changes. An interval containing a root is successively bisected to* narrow the interval and then linear interpolation is used to estimate the* root. For a given root at x0, the line spectral frequency is w0=acos(x0).** Since the roots of the two polynomials interlace, the search for roots* alternates between the polynomials Ta(x) and Tb(x). The sampling interval* must be small enough to avoid having two cancelling sign changes in the* same interval. Consider specifying the resolution in the LSF domain. For* an interval [xl, xh], the corresponding interval in frequency is [w1, w2],* with xh=cos(w1) and xl=cos(w2) (note the reversal in order). Let dw=w2-w1,* dx = xh-xl = xh [1-cos(dw)] + sqrt(1-xh*xh) sin(dw).* However, the calculation of the square root is overly time-consuming. If* instead, we use equal steps in the x-domain, the resolution in the LSF* domain is best at at pi/2 and worst at 0 and pi. As a compromise we fit a* quadratic to the step size relationship. At x=1, dx=(1-cos(dw); at x=0,* dx=sin(dw). Then the approximation is* dx' = (a(1-cos(dw))-sin(dw)) x**2 + sin(dw)).* For a=1, this value underestimates the step size in the range of interest.* However, the step size for just below x=1 and just above x=-1 fall well* below the desired step sizes. To compensate for this, we use a=4. Then at* x=+1 and x=-1, the step sizes are too large by a factor of 4, but rapidly* fall to about 60% of the desired values and then rise slowly to become * equal to the desired step size at x=0.*/ nf = 0; t = ta; n = na; xroot = (float)2.0; xlow = (float)1.0; ylow = FNevChebP(xlow, t, n);/** Define the step-size function parameters* The resolution in the LSF domain is at least DW/2**NBIS, not counting the* increase in resolution due to the linear interpolation step. For* DW=0.02*Pi, and NBIS=4, and a sampling frequency of 8000, this corresponds* to 5 Hz.*/ ss = (float)sin (DW); aa = (float)(4.0 - 4.0 * cos (DW) - (double)ss);/* Root search loop */ while (xlow > (float)-1.0 && nf < np) { /* New trial point */ xhigh = xlow; yhigh = ylow; dx = aa * xhigh * xhigh + ss; xlow = xhigh - dx; if (xlow < (float)-1.0) xlow = (float)-1.0; ylow = FNevChebP(xlow, t, n); if (ylow * yhigh <= (float)0.0) { /* Bisections of the interval containing a sign change */ dx = xhigh - xlow; for (i = 1; i <= NBIS; ++i) { dx = (float)0.5 * dx; xmid = xlow + dx; ymid = FNevChebP(xmid, t, n); if (ylow * ymid <= (float)0.0) { yhigh = ymid; xhigh = xmid; } else { ylow = ymid; xlow = xmid; } } /* * Linear interpolation in the subinterval with a sign change * (take care if yhigh=ylow=0) */ if (yhigh != ylow) xmid = xlow + dx * ylow / (ylow - yhigh); else xmid = xlow + dx; /* New root position */ lsf[nf] = (float)acos((double) xmid); ++nf; /* Start the search for the roots of the next polynomial at the estimated * location of the root just found. We have to catch the case that the * two polynomials have roots at the same place to avoid getting stuck at * that root. */ if (xmid >= xroot) { xmid = xlow - dx; } xroot = xmid; if (t == ta) { t = tb; n = nb; } else { t = ta; n = na; } xlow = xmid; ylow = FNevChebP(xlow, t, n); } }/* Error if np roots have not been found */ if (nf != np) { printf("\nWARNING: pc2lsf failed to find all lsf nf=%ld np=%ld\n", nf, np); return(0); } return(1);}/**---------------------------------------------------------------------------- Telecommunications & Signal Processing Lab ---------------* McGill University** Module:* float FNevChebP(float x, float c[], long N)** Purpose:* Evaluate a series expansion in Chebyshev polynomials** Description:* The series expansion in Chebyshev polynomials is defined as** N-1* Y(x) = SUM c(i) T(i,x) ,* i=0** where N is the order of the expansion, c(i) is the coefficient for the i'th* Chebyshev polynomial, and T(i,x) is the i'th order Chebyshev polynomial* evaluated at x.** The Chebyshev polynomials satisfy the recursion* T(i,x) = 2x T(i-1,x) - T(i-2,x),* with the initial conditions T(0,x)=1 and T(1,x)=x. This routine evaluates* the expansion using a backward recursion.** Parameters:* <- float* FNevChebP - Resulting value* -> float* x - Input value* -> float []* c - Array of coefficient values. c[i] is the coefficient of the* i'th order Chebyshev polynomial.* -> long* N - Number of coefficients** Author / revision:* P. Kabal* $Revision: 1.5 $ $Date: 1998/12/02 18:49:25 $*-------------------------------------------------------------------------*/float FNevChebP( /* result */float x, /* input : value */const float c[], /* input : Array of coefficient values */long n /* input : Number of coefficients */){ long i; float b0, b1, b2;/****************** Consider the backward recursion* b(i,x) = 2xb(i+1,x) - b(i+2,x) + c(i),* with initial conditions b(n,x)=0 and b(n+1,x)=0. Then dropping the* dependence on x,* c(i) = b(i) - 2xb(i+1) + b(i+2).** n-1* Y(x) = SUM c(i) T(i)* i=0** n-1* = SUM [b(i)-2xb(i+1)+b(i+2)] T(i)* i=0* n-1* = b(0)T(0) + b(1)T(1) - 2xb(1)T(0) + SUM b(i) [T(i)-2xT(i-1)+T(i-2)] * i=2* The term inside the sum is zero because of the recursive relationship* satisfied by the Chebyshev polynomials. Then substituting the values T(0)=1* and T(1)=x, Y(x) is expressed in terms of the diff. between b(0) and b(2)* (errors in b(0) and b(2) tend to cancel),* Y(x) = b(0)-xb(1) = [b(0)-b(2)+c(0)] / 2********************/ b1 = (float)0.0; b0 = (float)0.0; for (i = n - 1; i >= 0; --i) { b2 = b1; b1 = b0; b0 = (float)2.0 * x * b1 - b2 + c[i]; } return ((float)0.5 * (b0 - b2 + c[0]));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -