⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 phi_lsfr.c

📁 MPEG2/MPEG4编解码参考程序(实现了MPEG4的部分功能)
💻 C
📖 第 1 页 / 共 2 页
字号:
*   polynomials are formed from the error filter polynomial,*     Fa(D) = A(D) + D**(N+1) A(D**(-1))  (N+2 terms, symmetric)*     Fb(D) = A(D) - D**(N+1) A(D**(-1))  (N+2 terms, anti-symmetric)*/  fa[0] = (float)1.0;  for (i = 1, j = np; i < na; ++i, --j)    fa[i] = pc[i] + pc[j];  fb[0] = (float)1.0;  for (i = 1, j = np; i < nb; ++i, --j)    fb[i] = pc[i] - pc[j];/** N even,  Fa(D)  includes a factor 1+D,*          Fb(D)  includes a factor 1-D* N odd,   Fb(D)  includes a factor 1-D**2* Divide out these factors, leaving even order symmetric polynomials, M is the* total number of terms and Nc is the number of unique terms,**   N       polynomial            M         Nc=(M+1)/2* even,  Ga(D) = F1(D)/(1+D)     N+1          N/2+1*        Gb(D) = F2(D)/(1-D)     N+1          N/2+1* odd,   Ga(D) = F1(D)           N+2        (N+1)/2+1*        Gb(D) = F2(D)/(1-D**2)   N          (N+1)/2*/  if (odd) {    for (i = 2; i < nb; ++i)      fb[i] = fb[i] + fb[i-2];  }  else {    for (i = 1; i < na; ++i) {      fa[i] = fa[i] - fa[i-1];      fb[i] = fb[i] + fb[i-1];    }  }/**   To look for roots on the unit circle, Ga(D) and Gb(D) are evaluated for*   D=exp(jw).  Since Gz(D) and Gb(D) are symmetric, they can be expressed in*   terms of a series in cos(nw) for D on the unit circle.  Since M is odd and*   D=exp(jw)**           M-1        n *   Ga(D) = SUM fa(n) D             (symmetric, fa(n) = fa(M-1-n))*           n=0*                                    Mh-1*         = exp(j Mh w) [ f1(Mh) + 2 SUM fa(n) cos((Mh-n)w) ]*                                    n=0*                       Mh*         = exp(j Mh w) SUM ta(n) cos(nw) ,*                       n=0**   where Mh=(M-1)/2=Nc-1.  The Nc=Mh+1 coefficients ta(n) are defined as**   ta(n) =   fa(Nc-1) ,    n=0,*         = 2 fa(Nc-1-n) ,  n=1,...,Nc-1.*   The next step is to identify cos(nw) with the Chebyshev polynomial T(n,x).*   The Chebyshev polynomials satisfy the relationship T(n,cos(w)) = cos(nw).*   Omitting the exponential delay term, the series expansion in terms of*   Chebyshev polynomials is**           Nc-1*   Ta(x) = SUM ta(n) T(n,x)*           n=0**   The domain of Ta(x) is -1 < x < +1.  For a given root of Ta(x), say x0,*   the corresponding position of the root of Fa(D) on the unit circle is*   exp(j arccos(x0)).*/  ta[0] = fa[na-1];  for (i = 1, j = na - 2; i < na; ++i, --j)    ta[i] = (float)2.0 * fa[j];  tb[0] = fb[nb-1];  for (i = 1, j = nb - 2; i < nb; ++i, --j)    tb[i] = (float)2.0 * fb[j];/**   To find the roots, we sample the polynomials Ta(x) and Tb(x) looking for*   sign changes.  An interval containing a root is successively bisected to*   narrow the interval and then linear interpolation is used to estimate the*   root.  For a given root at x0, the line spectral frequency is w0=acos(x0).**   Since the roots of the two polynomials interlace, the search for roots*   alternates between the polynomials Ta(x) and Tb(x).  The sampling interval*   must be small enough to avoid having two cancelling sign changes in the*   same interval.  Consider specifying the resolution in the LSF domain.  For*   an interval [xl, xh], the corresponding interval in frequency is [w1, w2],*   with xh=cos(w1) and xl=cos(w2) (note the reversal in order).  Let dw=w2-w1,*     dx = xh-xl = xh [1-cos(dw)] + sqrt(1-xh*xh) sin(dw).*   However, the calculation of the square root is overly time-consuming.  If*   instead, we use equal steps in the x-domain, the resolution in the LSF*   domain is best at at pi/2 and worst at 0 and pi.  As a compromise we fit a*   quadratic to the step size relationship.  At x=1, dx=(1-cos(dw); at x=0,*   dx=sin(dw).  Then the approximation is*     dx' = (a(1-cos(dw))-sin(dw)) x**2 + sin(dw)).*   For a=1, this value underestimates the step size in the range of interest.*   However, the step size for just below x=1 and just above x=-1 fall well*   below the desired step sizes.  To compensate for this, we use a=4.  Then at*   x=+1 and x=-1, the step sizes are too large by a factor of 4, but rapidly*   fall to about 60% of the desired values and then rise slowly to become *   equal to the desired step size at x=0.*/  nf = 0;  t = ta;  n = na;  xroot = (float)2.0;  xlow = (float)1.0;  ylow = FNevChebP(xlow, t, n);/**   Define the step-size function parameters*   The resolution in the LSF domain is at least DW/2**NBIS, not counting the*   increase in resolution due to the linear interpolation step.  For*   DW=0.02*Pi, and NBIS=4, and a sampling frequency of 8000, this corresponds*   to 5 Hz.*/  ss = (float)sin (DW);  aa = (float)(4.0 - 4.0 * cos (DW)  - (double)ss);/* Root search loop */  while (xlow > (float)-1.0 && nf < np) {    /* New trial point */    xhigh = xlow;    yhigh = ylow;    dx = aa * xhigh * xhigh + ss;    xlow = xhigh - dx;    if (xlow < (float)-1.0)      xlow = (float)-1.0;    ylow = FNevChebP(xlow, t, n);    if (ylow * yhigh <= (float)0.0) {    /* Bisections of the interval containing a sign change */      dx = xhigh - xlow;      for (i = 1; i <= NBIS; ++i) {	dx = (float)0.5 * dx;	xmid = xlow + dx;	ymid = FNevChebP(xmid, t, n);	if (ylow * ymid <= (float)0.0) {	  yhigh = ymid;	  xhigh = xmid;	}	else {	  ylow = ymid;	  xlow = xmid;	}      }      /*       * Linear interpolation in the subinterval with a sign change       * (take care if yhigh=ylow=0)       */      if (yhigh != ylow)	xmid = xlow + dx * ylow / (ylow - yhigh);      else	xmid = xlow + dx;      /* New root position */      lsf[nf] = (float)acos((double) xmid);      ++nf;      /* Start the search for the roots of the next polynomial at the estimated       * location of the root just found.  We have to catch the case that the       * two polynomials have roots at the same place to avoid getting stuck at       * that root.       */      if (xmid >= xroot) {	xmid = xlow - dx;      }      xroot = xmid;      if (t == ta) {	t = tb;	n = nb;      }      else {	t = ta;	n = na;      }      xlow = xmid;      ylow = FNevChebP(xlow, t, n);    }  }/* Error if np roots have not been found */  if (nf != np) {    printf("\nWARNING: pc2lsf failed to find all lsf nf=%ld np=%ld\n", nf, np);    return(0);  }  return(1);}/**---------------------------------------------------------------------------- Telecommunications & Signal Processing Lab ---------------*                             McGill University** Module:*  float FNevChebP(float x,  float c[], long N)** Purpose:*  Evaluate a series expansion in Chebyshev polynomials** Description:*  The series expansion in Chebyshev polynomials is defined as**              N-1*       Y(x) = SUM c(i) T(i,x) ,*              i=0**  where N is the order of the expansion, c(i) is the coefficient for the i'th*  Chebyshev polynomial, and T(i,x) is the i'th order Chebyshev polynomial*  evaluated at x.**  The Chebyshev polynomials satisfy the recursion*    T(i,x) = 2x T(i-1,x) - T(i-2,x),*  with the initial conditions T(0,x)=1 and T(1,x)=x.  This routine evaluates*  the expansion using a backward recursion.** Parameters:*  <-  float*  FNevChebP -	Resulting value*  ->  float*  x -		Input value*  ->  float []*  c -		Array of coefficient values.  c[i] is the coefficient of the*		i'th order Chebyshev polynomial.*  ->  long*  N -		Number of coefficients** Author / revision:*  P. Kabal*  $Revision: 1.5 $  $Date: 1998/12/02 18:49:25 $*-------------------------------------------------------------------------*/float FNevChebP(		/* result */float  x,			/* input : value */const float c[],		/* input : Array of coefficient values */long n				/* input : Number of coefficients */){  long i;  float b0, b1, b2;/******************   Consider the backward recursion*     b(i,x) = 2xb(i+1,x) - b(i+2,x) + c(i),*   with initial conditions b(n,x)=0 and b(n+1,x)=0.  Then dropping the*   dependence on x,*     c(i) = b(i) - 2xb(i+1) + b(i+2).**          n-1*   Y(x) = SUM c(i) T(i)*          i=0**          n-1*        = SUM [b(i)-2xb(i+1)+b(i+2)] T(i)*          i=0*                                             n-1*        = b(0)T(0) + b(1)T(1) - 2xb(1)T(0) + SUM b(i) [T(i)-2xT(i-1)+T(i-2)] *                                             i=2* The term inside the sum is zero because of the recursive relationship* satisfied by the Chebyshev polynomials.  Then substituting the values T(0)=1* and T(1)=x, Y(x) is expressed in terms of the diff. between b(0) and b(2)* (errors in b(0) and b(2) tend to cancel),*   Y(x) = b(0)-xb(1) = [b(0)-b(2)+c(0)] / 2********************/  b1 = (float)0.0;  b0 = (float)0.0;  for (i = n - 1; i >= 0; --i) {    b2 = b1;    b1 = b0;    b0 = (float)2.0 * x * b1 - b2 + c[i];  }  return ((float)0.5 * (b0 - b2 + c[0]));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -