⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bp_innerloop.m

📁 一个MATLAB写的BP神经网络原代码
💻 M
字号:
% bp_innerloop.m%% Inner loop of the backpropagtion learning algorithm.% One hidden layer.  Uses tanh as the transfer function.%% Uses the following global variables for input and/or output:%    Inputs1   -  input patterns%    Desired   -  desired output patterns%    LearnRate -  learning rate parameter%    Momentum  -  momentum parameter%    DerivIncr -  increment to the derivative of the transfer function%                   (Fahlman's trick; typical value 0.2)%    Weights1  -  first weight layer (updated by this routine)%    Weights2  -  second weight layer (updated by this routine)%    deltaW1   -  initialize to 0 before first call%    deltaW2   -  initialize to 0 before first call%    TSS       -  total sum-squared error (set by this routine)  % Forward propagate activations:  NetIn1 = Weights1 * Inputs1;  Result1 = tanh(NetIn1);  Inputs2 = [ones(1,NPATS); Result1];  NetIn2 = Weights2 * Inputs2;  Result2 = tanh(NetIn2);  % Backward propagate errors:  Result2Error = Result2 - Desired;  TSS = sum(sum(Result2Error.^2));  In2Error = Result2Error .* (DerivIncr + cosh(NetIn2).^(-2));  Result1Error = Weights2' * In2Error;  In1Error = Result1Error(2:end,:) .* (DerivIncr + cosh(NetIn1).^(-2));  % Calculate the weight updates:  dW2 = In2Error * Inputs2';  dW1 = In1Error * Inputs1';  deltaW2 = -LearnRate * dW2 + Momentum * deltaW2;  deltaW1 = -LearnRate * dW1 + Momentum * deltaW1;  Weights2 = Weights2 + deltaW2;  Weights1 = Weights1 + deltaW1;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -