⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aggregatepredbyshot.m

📁 一个matlab的工具包,里面包括一些分类器 例如 KNN KMEAN SVM NETLAB 等等有很多.
💻 M
字号:

function [Y_compute, Y_prob, Y_test] = AggregatePredByShot(Y_compute, Y_prob, Y_test, testindex, class_set, threshold)

global preprocess;

if (nargin < 5), class_set = preprocess.OrgClassSet; end;
if (nargin < 6), threshold = 0.5; end;

ShotInfo = preprocess.ShotInfo(testindex);
sort_class_set = sort(class_set);

ShotIDTestSet = unique(ShotInfo);
Y_aggregate_compute = zeros(size(ShotIDTestSet));
Y_aggregate_prob = zeros(size(ShotIDTestSet));
Y_aggregate_test = zeros(size(ShotIDTestSet));
for j = 1:length(ShotIDTestSet)
    Y_prob_shotID = Y_prob(ShotInfo == ShotIDTestSet(j));
    Y_aggregate_prob(j) = sum(Y_prob_shotID)/length(Y_prob_shotID);
    
    % Y_aggregate_compute(j) = class_set(1) * (Y_aggregate_prob(j) >= threshold) + class_set(2) * (Y_aggregate_prob(j) < threshold);
    labelhist = histc(Y_compute(ShotInfo == ShotIDTestSet(j)), sort_class_set);
    [junk, index] = max(labelhist);
    Y_aggregate_compute(j) = sort_class_set(index);
    
    %Y_test_shotID = Y_test(ShotInfo == ShotIDTestSet(j));
    %Y_aggregate_test(j) = class_set(1) * (sum(Y_test_shotID == class_set(1)) > 0) + class_set(2) * (sum(Y_test_shotID == class_set(1)) == 0);
    labelhist = histc(Y_test(ShotInfo == ShotIDTestSet(j)), sort_class_set);
    [junk, index] = max(labelhist);
    Y_aggregate_test(j) = sort_class_set(index);    
end;
Y_compute = Y_aggregate_compute;
Y_prob = Y_aggregate_prob;
Y_test = Y_aggregate_test;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -