📄 gp_classify.m
字号:
function [Y_compute, Y_prob] = GP_classify(para, X_train, Y_train, X_test, Y_test, num_class)
% Gaussian Process for Classification/Regression
% Not Ready yet
global temp_model_file;
[class_set, num_class] = GetClassSet(Y_train);
if (nargin <= 5)
num_class = 2;
end;
p = str2num(char(ParseParameter(para, {'-PriorMean'; '-PriorVariance'}, {'0'; '1'})));
pr_mean = p(1);
pr_variance = p(2);
num_feature = size(X_train, 2);
% Fix seeds for reproducible results
rand('state', 42);
for i = 1:num_class
% Convert the binary labels into +/-1
data = X_train(Y_train == class_set(i),:);
% Now train to find the hyperparameters.
options = foptions;
options(1) = 1; % Display training error values
options(14) = 20;
prior.pr_mean = pr_mean;
prior.pr_var = pr_variance;
net = gp(1, 'ratquad');
% net = gp(1, 'sqexp');
net = gpinit(net, data, Y_train, prior);
[net, options] = netopt(net, options, data, Y_train, 'scg');
cn = gpcovar(net, data);
cninv = inv(cn);
[ytest, sigsq] = gpfwd(net, X_test, cninv);
sig = sqrt(sigsq);
end;
[Y_prob Index] = max(Y_prob_matrix, [], 2);
Y_compute = class_set(Index);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -