📄 fldakernel.m
字号:
function [Y_compute, Y_prob] = FLDAKernel(para, X_train, Y_train, X_test, Y_test, num_class)
global temp_model_file preprocess;
Y_compute = zeros(size(Y_test)); Y_prob = zeros(size(Y_test));
if (num_class > 2)
error('PerceptronKernel: The class number is larger than 2!');
end;
class_set = GetClassSet(Y_train);
p = str2num(char(ParseParameter(para, {'-Kernel';'-KernelParam';'-RegFactor'}, {'0';'0.05';'0'}, 1)));
KernelType = p(1);
KernelPara = p(2);
RegFactor = p(3);
%X_train_ext = [X_train ones(size(X_train, 1), 1)];
%X_train_ext = X_train_ext(1:size(X_train_ext, 1), :);
%Y_train = Y_train(1:size(Y_train, 1), :);
%X_test_ext = [X_test ones(size(X_test, 1), 1)];
%X_ext = X_train_ext;
beta = [];
if (~isempty(X_train)),
% Convert the binary labels into +/-1
Y_train = (Y_train == class_set(1)) - (Y_train ~= class_set(1));
[beta, mu1, mu2] = LearnFLDAKernel(Y_train, X_train, KernelType, KernelPara, RegFactor);
fid = fopen(temp_model_file, 'w');
if (fid > 0),
fprintf('Writing to %s .... \n', temp_model_file);
fprintf(fid, 'File: %s\n', preprocess.input_file);
fprintf(fid, 'N: %d\n', size(Y_train, 1));
fprintf(fid, '%d ', class_set); fprintf(fid, '\n');
fprintf(fid, '%f,%f', mu1, mu2); fprintf(fid, '\n');
format_str = '';
for i = 1:size(X_train,2)+1, format_str = strcat(format_str, '%f,'); end;
format_str = strcat(format_str, '\n');
fprintf(fid, format_str, [beta X_train]');
fclose(fid);
end;
else
fid = fopen(temp_model_file, 'r');
if (fid > 0),
fgets(fid);
line = fgetl(fid); num = sscanf(line, 'N: %d');
line = fgetl(fid); class_set = sscanf(line, '%d');
[mu1, mu2] = fscanf(fid, '%f,%f', 2);
input = fscanf(fid, '%f,');
input = reshape(input, [], num)';
beta = input(:, 1); X_train = input(:, 2:size(input, 2));
fclose(fid);
preprocess.ClassSet = class_set;
end;
end;
% Logit_Y_prob = zeros(size(X_test, 1), 1);
Logit_Y_prob = PredictFLDAKernel(beta, X_train, X_test, KernelType, KernelPara, mu1, mu2);
% Y_prob = (exp(Logit_Y_prob) ./ (1 + exp(Logit_Y_prob))) .* (Logit_Y_prob >= 0) + (1 ./ (1 + exp(Logit_Y_prob))) .* (Logit_Y_prob < 0);
Y_prob = exp(Logit_Y_prob) ./ (1 + exp(Logit_Y_prob));
Y_compute = class_set(1) * (Logit_Y_prob >= 0) + class_set(2) * (Logit_Y_prob < 0);
% Learning
function [beta, mu1, mu2] = LearnFLDAKernel(Y_train, X_train, KernelType, KernelPara, RegFactor)
extx = X_train;
mextx = size(extx, 1);
% Build the kernel matrix
switch (KernelType)
case 0
kernel = extx * extx';
case 1
kernel = (1 + extx * extx') .^ KernelPara;
case 2
kernel = eye(mextx);
for i = 1:mextx
k = repmat(extx(i, :), size(extx, 1), 1) - extx;
kernel(:, i) = sum(k .* k, 2);
end;
% kernel = exp(-KernelPara * kernel);
kernel = exp(- kernel / (2 * KernelPara ^2));
end;
[num_data, num_feature] = size(X_train);
beta = zeros(num_data, 1);
Kc(:, 1) = mean(kernel(:, Y_train == 1), 2);
Kc(:, 2) = mean(kernel(:, Y_train == -1),2);
K = mean(kernel, 2);
num_class = 2;
num_pos = sum(Y_train == 1);
num_neg = sum(Y_train == -1);
SB = Kc * Kc' - num_class * K * K';
SW = kernel * kernel - num_pos * Kc(:, 1) * Kc(:, 1)' - num_neg * Kc(:, 2) * Kc(:, 2)';
% M = SB \ SW;
[V, D] = eig(SB, SW + RegFactor * eye(size(SW)));
[junk, ind] = max(diag(D));
beta = V(:, ind);
L_output = kernel * beta;
mu1 = mean(L_output(Y_train == 1));
mu2 = mean(L_output(Y_train == -1));
% sigma = std(L_output(Y_train == 1));
% Prediction
function [L_output, kernel] = PredictFLDAKernel(beta, D_train, D_test, KernelType, KernelPara, mu1, mu2)
if nargin<4, kerneltype = 0; end;
if nargin<5, kernelpara = 0; end;
switch (KernelType)
case 0
kernel = D_test * D_train';
case 1
kernel = (1 + D_test * D_train') .^ KernelPara;
case 2
% RBFftr = 0.01;
num_test = size(D_test, 1);
num_train = size(D_train, 1);
kernel = zeros(num_test, num_train);
for i = 1:num_test
for j = 1:num_train
kernel(i, j) = (D_test(i, :) - D_train(j, :)) * (D_test(i, :) - D_train(j, :))';
end;
end;
% kernel = exp(-KernelPara * kernel);
kernel = exp(- kernel / (2 * KernelPara ^2));
end;
L_output = kernel * beta;
L_output = (L_output - mu2) .^ 2 - (L_output - mu1) .^ 2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -