📄 mcadaboostm1.m
字号:
% Written by Rong Jin
% Revised by Rong Yan
function [Y_compute, Y_prob] = MCAdaBoostM1(classifier, para, X_train, Y_train, X_test, Y_test, num_class)
rand('state', 40);
class_set = GetClassSet(Y_train);
p = str2num(char(ParseParameter(para, {'-Iter';'-SampleRatio'}, {'10';'1'})));
Max_Iter = p(1);
Sample_Ratio = p(2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Data for models
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
num_data = length(Y_train);
% Initialize the data
Dist = ones(length(Y_train), 1) ./ length(Y_train);
X_Sample = X_train;
Y_Sample = Y_train;
Y_compute_train_matrix = zeros(length(Y_train), num_class);
Y_compute_test_matrix = zeros(length(Y_test), num_class);
Y_compute = zeros(length(Y_test), 1);
Y_prob = zeros(length(Y_test), 1);
for iter = 0:Max_Iter
% Compute scores for training data
[Y_compute_all junk] = Classify(classifier, X_Sample, Y_Sample, [X_train; X_test], [Y_train; Y_test], num_class);
Y_compute_train = Y_compute_all(1:length(Y_train), :);
Y_compute_test = Y_compute_all(length(Y_train)+1:length(Y_train)+length(Y_test), :);
Weight_Err = sum(Dist .* (Y_compute_train ~= Y_train));
%Weight_Err = (1 - Weight_Err) / 2;
if Weight_Err == 0, fprintf('Terminated: Training Error is Zero!'); break, end;
if Weight_Err >= 0.5, fprintf('Terminated: Training Error is Larger than 0.5!'); break, end
beta = Weight_Err / (1 - Weight_Err);
alpha = -log(beta); % log(1/beta)
fprintf('%d: beta = %f, alpha = %f\n', iter, beta, alpha);
for i = 1:num_class,
ind = find(Y_compute_train == class_set(i));
Y_compute_train_matrix(ind, i) = Y_compute_train_matrix(ind, i) + alpha;
end;
[junk Index] = max(Y_compute_train_matrix, [], 2);
fprintf('Training: '); CalculatePerformance(class_set(Index), Y_train, class_set, 0);
% Compute the predictions
%[Y_compute Test_Y_Prob] = Classify(classifier, para, X_Sample, Y_Sample, X_test, Y_test, num_class);
% Test_Y_Combine = Test_Y_Combine + Test_Y_Pred * Comb_Const;
%[Y_compute_test junk] = Classify(classifier, X_Sample, Y_Sample, X_test, Y_test, num_class);
for i = 1:num_class,
ind = find(Y_compute_test == class_set(i));
Y_compute_test_matrix(ind, i) = Y_compute_test_matrix(ind, i) + alpha;
end;
[Y_prob Index] = max(Y_compute_test_matrix, [], 2);
Y_compute = class_set(Index);
fprintf('Testing: '); CalculatePerformance(Y_compute, Y_test, class_set, 0);
% Compute the sampling distribution
Dist = Dist .* ((Y_compute_train ~= Y_train) + (Y_compute_train == Y_train) .* beta);
Dist = Dist ./ sum(Dist);
% Sample data and retrain the model
Y_Sample = [];
while (length(unique(Y_Sample)) < num_class),
num_samples = ceil(length(Y_train) * Sample_Ratio);
Sample_Idx = SampleDistribution(Dist, num_samples);
X_Sample = X_train(Sample_Idx, :);
Y_Sample = Y_train(Sample_Idx);
end;
end
% Convert Y_prob to probability
Y_prob = 1 ./ (1 + exp(-Y_prob));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -