⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 train_test_multiple_class_al.m

📁 一个matlab的工具包,里面包括一些分类器 例如 KNN KMEAN SVM NETLAB 等等有很多.
💻 M
字号:
function run = train_test_multiple_class_AL(X, Y, trainindex, testindex, classifier)

global preprocess;

% The statistics of dataset
num_class = length(preprocess.ClassSet);
actual_num_class = length(preprocess.OrgClassSet);
class_set = preprocess.ClassSet;

coding_matrix = GenerateCodeMatrix(preprocess.MultiClass.CodeType, actual_num_class);
coding_len = size(coding_matrix, 2);
%test_len = num_data - splitboundary;
Y_coding_matrix = (Y == class_set(1)) * coding_matrix;

X_train = X(trainindex, :);
Y_train_coding_matrix = Y_coding_matrix(trainindex, :);
X_test = X(testindex, :);
Y_test_matrix = Y(testindex, :);
Y_test_coding_matrix = Y_coding_matrix(testindex, :);

for i = 1:preprocess.ActiveLearning.Iteration
    
    test_len = size(Y_test_coding_matrix, 1);
    Y_compute_matrix = zeros(test_len, actual_num_class);
    Y_uncertainty = zeros(test_len, 1);
    Y_compute_coding_matrix = zeros(test_len, coding_len);
    for j = 1:coding_len
        Y_train_coding = Y_train_coding_matrix(:, j);
        Y_test_coding = Y_test_coding_matrix(:, j);
        
        % Delete the element of which the label is zero
        X_train_norm = X_train(Y_train_coding ~= 0, :);
        Y_train_coding_norm = Y_train_coding(Y_train_coding ~= 0, :);
        
        % Converting the label back to class_set
        conv_Y_train_coding_norm = class_set(1) * (Y_train_coding_norm == 1)  +  class_set(2) * (Y_train_coding_norm == -1);
        conv_Y_test_coding = class_set(1) * (Y_test_coding == 1) + class_set(2) * (Y_test_coding == -1);    
        [Y_compute, Y_prob] = Classify(classifier, X_train_norm, conv_Y_train_coding_norm, X_test, conv_Y_test_coding, num_class);  
        CalculatePerformance(Y_compute, Y_test_coding, class_set);
        % Y_compute_coding_matrix(:, j) = Y_prob - preprocess.SVMSCutThreshold;
        Y_compute_coding_matrix(:, j) = 2 * Y_prob - 1;
    end;

    for j = 1: test_len
        for k = 1:actual_num_class
            dl = Y_compute_coding_matrix(j, :) .* coding_matrix(k, :);
            switch (preprocess.MultiClass.LossFuncType)
            case 0 
                loss = 1 ./ (1 + exp(2 * dl)); 
            case 1
                loss = exp(-dl);
            case 2
                loss = (dl <= 1) .* (1 - dl);
            end;
            Y_compute_matrix(j, k) = sum(loss); % Loss Function
        end;
    end;

    [Y_loss Y_loss_index]= min(Y_compute_matrix, [], 2);
    for j = 1: test_len
        Y_compute_matrix(j, :) = (Y_compute_matrix(j, :) == Y_loss(j)) * class_set(1) + (Y_compute_matrix(j, :) ~= Y_loss(j)) * class_set(2);
    end;

    for j = 1: test_len
        switch (preprocess.MultiClass.ProbEstimation)
        case 0
            dl = Y_compute_coding_matrix(j, :) .* coding_matrix(Y_loss_index(j), :);
            Y_uncertainty(j) = SumLossFunc(dl, coding_len);
        case 1
            dl = Y_compute_coding_matrix(j, :) .* ones(1, coding_len);
            Y_uncertainty(j) = SumLossFunc(dl, coding_len);            
            dl = Y_compute_coding_matrix(j, :) .* ones(1, coding_len) * -1;
            Y_uncertainty(j) = Y_uncertainty(j) + SumLossFunc(dl, coding_len);            
        case 2
            Y_uncertainty(j) = any(abs(Y_compute_coding_matrix(j, :)) == min(abs(Y_compute_coding_matrix)));
        end;
    end;
    
    for j = 1:actual_num_class
        Y_compute = Y_compute_matrix(:, j);
        Y_test = Y_test_matrix(:, j);
        [run_class.yy(j), run_class.yn(j), run_class.ny(j), run_class.nn(j), run_class.prec(j), run_class.rec(j), run_class.F1(j),...
            run_class.err(j)] = CalculatePerformance(Y_compute, Y_test, class_set);
    end  
    
    [Y_compute, junk] = find(Y_compute_matrix');
    [Y_test, junk] = find(Y_test_matrix');
    run.Y_compute = Y_compute; run.Y_prob = Y_loss; run.Y_test = Y_test;
    % Aggregate the predictions in a shot
    if (preprocess.ShotAvailable == 1), [Y_compute_agg, Y_prob_agg, Y_test_agg] = AggregatePredByShot(Y_compute, Y_prob, Y_test, testindex); end;  
    [junk, junk, junk, junk, run.Micro_Prec, run.Micro_Rec, run.Micro_F1, run.Err] = CalculatePerformance(Y_compute_agg, Y_test_agg, preprocess.OrgClassSet);

    run.Macro_Prec = sum(run_class.prec) / actual_num_class;
    run.Macro_Rec = sum(run_class.rec) / actual_num_class;
    run.Macro_F1 = NormalizeRatio(2 * run.Macro_Prec * run.Macro_Rec, run.Macro_Prec + run.Macro_Rec);
    %run.Micro_Prec = NormalizeRatio(sum(run_class.yy), sum(run_class.yy) + sum(run_class.ny)); 
    %run.Micro_Rec = NormalizeRatio(sum(run_class.yy), sum(run_class.yy) + sum(run_class.yn));  
    %run.Micro_F1 = NormalizeRatio(2 * run.Micro_Prec * run.Micro_Rec, run.Micro_Prec + run.Micro_Rec);
    %run.Err = 1 - run.Micro_F1;
    RunClass(i) = run;
    fprintf('Iter %d: Train Size = %d, Error = %f\n Macro_Precision = %f, Macro_Recall = %f, Macro_F1 = %f\n Micro_Precision = %f, Micro_Recall = %f, Micro_F1 = %f\n', ... 
            i, size(X_train, 1), run.Err, run.Macro_Prec, run.Macro_Rec, run.Macro_F1, run.Micro_Prec, run.Micro_Rec, run.Micro_F1);  
    
    % Delete the testing data that have been labeled    
    
    %[C Index] = sort(abs(Y_compute_coding_matrix)); 
    [C Index] = sort(-Y_uncertainty);
    for k = 1:preprocess.ActiveLearning.IncrementSize
        X_train = [X_train; X_test(Index(k), :)];
        Y_train_coding_matrix = [Y_train_coding_matrix; Y_test_coding_matrix(Index(k), :)];
    end 
        
    Index = Index(1:preprocess.ActiveLearning.IncrementSize);
    Y_uncertainty(Index) = [];
    X_test(Index, :) = [];
    Y_test_matrix(Index, :) = [];
    Y_test_coding_matrix(Index, :) = [];
    
%     if (preprocess.ShotAvailable == 1)
%         ShotInfo = preprocess.ShotInfo(testindex(Index));
%         disp(ShotInfo');
%     end;
    testindex(Index) = [];
end
run.Stage_Result = RunClass;

function SumCertainty = SumLossFunc(dl, coding_len)

global preprocess;
switch (preprocess.MultiClass.UncertaintyFuncType)    
case 0 
      uncertainty = 1 ./ (1 + exp(2 * dl)); 
case 1
      uncertainty = exp(-dl);
case 2
      uncertainty = (dl <= 1) .* (1 - dl);
case 3
      uncertainty = exp(-100 * abs(dl)); % minimum abs(dl)
case 4
      if (dl > -1) 
           uncertainty = log( 1./(1+dl));
      else
           uncertainty = 0;
      end;
case 5
      uncertainty = rand(1, coding_len);
end;
SumCertainty = sum(uncertainty);
        

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -