⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 demmlp2.m

📁 一个matlab的工具包,里面包括一些分类器 例如 KNN KMEAN SVM NETLAB 等等有很多.
💻 M
字号:
%DEMMLP2 Demonstrate simple classification using a multi-layer perceptron%%	Description%	The problem consists of input data in two dimensions drawn from a%	mixture of three Gaussians: two of which are assigned to a single%	class.  An MLP with logistic outputs trained with a quasi-Newton%	optimisation algorithm is compared with the optimal Bayesian decision%	rule.%%	See also%	MLP, MLPFWD, NETERR, QUASINEW%%	Copyright (c) Ian T Nabney (1996-2001)% Set up some figure parametersAxisShift = 0.05;ClassSymbol1 = 'r.';ClassSymbol2 = 'y.';PointSize = 12;titleSize = 10;% Fix the seedsrand('state', 423);randn('state', 423);clcdisp('This demonstration shows how an MLP with logistic outputs and')disp('and cross entropy error function can be trained to model the')disp('posterior class probabilities in a classification problem.')disp('The results are compared with the optimal Bayes rule classifier,')disp('which can be computed exactly as we know the form of the generating')disp('distribution.')disp(' ')disp('Press any key to continue.')pausefh1 = figure;set(fh1, 'Name', 'True Data Distribution');whitebg(fh1, 'k');% % Generate the data% n=200;% Set up mixture model: 2d data with three centres% Class 1 is first centre, class 2 from the other twomix = gmm(2, 3, 'full');mix.priors = [0.5 0.25 0.25];mix.centres = [0 -0.1; 1 1; 1 -1];mix.covars(:,:,1) = [0.625 -0.2165; -0.2165 0.875];mix.covars(:,:,2) = [0.2241 -0.1368; -0.1368 0.9759];mix.covars(:,:,3) = [0.2375 0.1516; 0.1516 0.4125];[data, label] = gmmsamp(mix, n);% % Calculate some useful axis limits% x0 = min(data(:,1));x1 = max(data(:,1));y0 = min(data(:,2));y1 = max(data(:,2));dx = x1-x0;dy = y1-y0;expand = 5/100;			% Add on 5 percent each wayx0 = x0 - dx*expand;x1 = x1 + dx*expand;y0 = y0 - dy*expand;y1 = y1 + dy*expand;resolution = 100;step = dx/resolution;xrange = [x0:step:x1];yrange = [y0:step:y1];% 					% Generate the grid% [X Y]=meshgrid([x0:step:x1],[y0:step:y1]);% % Calculate the class conditional densities, the unconditional densities and% the posterior probabilities% px_j = gmmactiv(mix, [X(:) Y(:)]);px = reshape(px_j*(mix.priors)',size(X));post = gmmpost(mix, [X(:) Y(:)]);p1_x = reshape(post(:, 1), size(X));p2_x = reshape(post(:, 2) + post(:, 3), size(X));% % Generate some pretty pictures !!% colormap(hot)colorbarsubplot(1,2,1)hold onplot(data((label==1),1),data(label==1,2),ClassSymbol1, 'MarkerSize', PointSize)plot(data((label>1),1),data(label>1,2),ClassSymbol2, 'MarkerSize', PointSize)contour(xrange,yrange,p1_x,[0.5 0.5],'w-');axis([x0 x1 y0 y1])set(gca,'Box','On')title('The Sampled Data');rect=get(gca,'Position');rect(1)=rect(1)-AxisShift;rect(3)=rect(3)+AxisShift;set(gca,'Position',rect)hold offsubplot(1,2,2)imagesc(X(:),Y(:),px);hold on[cB, hB] = contour(xrange,yrange,p1_x,[0.5 0.5],'w:');set(hB,'LineWidth', 2);axis([x0 x1 y0 y1])set(gca,'YDir','normal')title('Probability Density p(x)')hold offdrawnow;clc;disp('The first figure shows the data sampled from a mixture of three')disp('Gaussians, the first of which (whose centre is near the origin) is')disp('labelled red and the other two are labelled yellow.  The second plot')disp('shows the unconditional density of the data with the optimal Bayesian')disp('decision boundary superimposed.')disp(' ')disp('Press any key to continue.')pausefh2 = figure;set(fh2, 'Name', 'Class-conditional Densities and Posterior Probabilities');whitebg(fh2, 'w');subplot(2,2,1)p1=reshape(px_j(:,1),size(X));imagesc(X(:),Y(:),p1);colormap hotcolorbaraxis(axis)set(gca,'YDir','normal')hold onplot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2)title('Density p(x|red)')hold offsubplot(2,2,2)p2=reshape((px_j(:,2)+px_j(:,3)),size(X));imagesc(X(:),Y(:),p2);colorbarset(gca,'YDir','normal')hold onplot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2)title('Density p(x|yellow)')hold offsubplot(2,2,3)imagesc(X(:),Y(:),p1_x);set(gca,'YDir','normal')colorbartitle('Posterior Probability p(red|x)')hold onplot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2)hold offsubplot(2,2,4)imagesc(X(:),Y(:),p2_x);set(gca,'YDir','normal')colorbartitle('Posterior Probability p(yellow|x)')hold onplot(mix.centres(:,1),mix.centres(:,2),'b+','MarkerSize',8,'LineWidth',2)hold off% Now set up and train the MLPnhidden=6;nout=1;alpha = 0.2;	% Weight decayncycles = 60;	% Number of training cycles. % Set up MLP networknet = mlp(2, nhidden, nout, 'logistic', alpha);options = zeros(1,18);options(1) = 1;                 % Print out error valuesoptions(14) = ncycles;mlpstring = ['We now set up an MLP with ', num2str(nhidden), ...    ' hidden units, logistic output and cross'];trainstring = ['entropy error function, and train it for ', ...    num2str(ncycles), ' cycles using the'];wdstring = ['quasi-Newton optimisation algorithm with weight decay of ', ...    num2str(alpha), '.'];% Force out the figure before training the MLPdrawnow;disp(' ')disp('The second figure shows the class conditional densities and posterior')disp('probabilities for each class. The blue crosses mark the centres of')disp('the three Gaussians.')disp(' ')disp(mlpstring)disp(trainstring)disp(wdstring)disp(' ')disp('Press any key to continue.')pause% Convert targets to 0-1 encodingtarget=[label==1];% Train using quasi-Newton.[net] = netopt(net, options, data, target, 'quasinew');y = mlpfwd(net, data);yg = mlpfwd(net, [X(:) Y(:)]);yg = reshape(yg(:,1),size(X));fh3 = figure;set(fh3, 'Name', 'Network Output');whitebg(fh3, 'k')subplot(1, 2, 1)hold onplot(data((label==1),1),data(label==1,2),'r.', 'MarkerSize', PointSize)plot(data((label>1),1),data(label>1,2),'y.', 'MarkerSize', PointSize)% Bayesian decision boundary[cB, hB] = contour(xrange,yrange,p1_x,[0.5 0.5],'b-');[cN, hN] = contour(xrange,yrange,yg,[0.5 0.5],'r-');set(hB, 'LineWidth', 2);set(hN, 'LineWidth', 2);Chandles = [hB(1) hN(1)];legend(Chandles, 'Bayes', ...  'Network', 3);axis([x0 x1 y0 y1])set(gca,'Box','on','XTick',[],'YTick',[])title('Training Data','FontSize',titleSize);hold offsubplot(1, 2, 2)imagesc(X(:),Y(:),yg);colormap hotcolorbaraxis(axis)set(gca,'YDir','normal','XTick',[],'YTick',[])title('Network Output','FontSize',titleSize)clcdisp('This figure shows the training data with the decision boundary')disp('produced by the trained network and the network''s prediction of')disp('the posterior probability of the red class.')disp(' ')disp('Press any key to continue.')pause% % Now generate and classify a test data set% [testdata testlabel] = gmmsamp(mix, n);testlab=[testlabel==1 testlabel>1];% This is the Bayesian classificationtpx_j = gmmpost(mix, testdata);Bpost = [tpx_j(:,1), tpx_j(:,2)+tpx_j(:,3)];[Bcon Brate]=confmat(Bpost, [testlabel==1 testlabel>1]);% Compute network classificationyt = mlpfwd(net, testdata);% Convert single output to posteriors for both classestestpost = [yt 1-yt];[C trate]=confmat(testpost,[testlabel==1 testlabel>1]);fh4 = figure;set(fh4, 'Name', 'Decision Boundaries');whitebg(fh4, 'k');hold onplot(testdata((testlabel==1),1),testdata((testlabel==1),2),...  ClassSymbol1, 'MarkerSize', PointSize)plot(testdata((testlabel>1),1),testdata((testlabel>1),2),...  ClassSymbol2, 'MarkerSize', PointSize)% Bayesian decision boundary[cB, hB] = contour(xrange,yrange,p1_x,[0.5 0.5],'b-');set(hB, 'LineWidth', 2);% Network decision boundary[cN, hN] = contour(xrange,yrange,yg,[0.5 0.5],'r-');set(hN, 'LineWidth', 2);Chandles = [hB(1) hN(1)];legend(Chandles, 'Bayes decision boundary', ...  'Network decision boundary', -1);axis([x0 x1 y0 y1])title('Test Data')set(gca,'Box','On','Xtick',[],'YTick',[])clcdisp('This figure shows the test data with the decision boundary')disp('produced by the trained network and the optimal Bayes rule.')disp(' ')disp('Press any key to continue.')pausefh5 = figure;set(fh5, 'Name', 'Test Set Performance');whitebg(fh5, 'w');% Bayes rule performancesubplot(1,2,1)plotmat(Bcon,'b','k',12)set(gca,'XTick',[0.5 1.5])set(gca,'YTick',[0.5 1.5])grid('off')set(gca,'XTickLabel',['Red   ' ; 'Yellow'])set(gca,'YTickLabel',['Yellow' ; 'Red   '])ylabel('True')xlabel('Predicted')title(['Bayes Confusion Matrix (' num2str(Brate(1)) '%)'])% Network performancesubplot(1,2, 2)plotmat(C,'b','k',12)set(gca,'XTick',[0.5 1.5])set(gca,'YTick',[0.5 1.5])grid('off')set(gca,'XTickLabel',['Red   ' ; 'Yellow'])set(gca,'YTickLabel',['Yellow' ; 'Red   '])ylabel('True')xlabel('Predicted')title(['Network Confusion Matrix (' num2str(trate(1)) '%)'])disp('The final figure shows the confusion matrices for the')disp('two rules on the test set.')disp(' ')disp('Press any key to exit.')pausewhitebg(fh1, 'w');whitebg(fh2, 'w');whitebg(fh3, 'w');whitebg(fh4, 'w');whitebg(fh5, 'w');close(fh1); close(fh2); close(fh3);close(fh4); close(fh5);clear all;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -