📄 pca.m
字号:
function [PCcoeff, PCvec] = pca(data, N)%PCA Principal Components Analysis%% Description% PCCOEFF = PCA(DATA) computes the eigenvalues of the covariance% matrix of the dataset DATA and returns them as PCCOEFF. These% coefficients give the variance of DATA along the corresponding% principal components.%% PCCOEFF = PCA(DATA, N) returns the largest N eigenvalues.%% [PCCOEFF, PCVEC] = PCA(DATA) returns the principal components as well% as the coefficients. This is considerably more computationally% demanding than just computing the eigenvalues.%% See also% EIGDEC, GTMINIT, PPCA%% Copyright (c) Ian T Nabney (1996-2001)if nargin == 1 N = size(data, 2);endif nargout == 1 evals_only = logical(1);else evals_only = logical(0);endif N ~= round(N) | N < 1 | N > size(data, 2) error('Number of PCs must be integer, >0, < dim');end% Find the sorted eigenvalues of the data covariance matrixif evals_only PCcoeff = eigdec(cov(data), N);else [PCcoeff, PCvec] = eigdec(cov(data), N);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -