⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 status.c

📁 Solaris环境下的数据挖掘算法:birch聚类算法。该算法适用于对大量数据的挖掘。
💻 C
📖 第 1 页 / 共 2 页
字号:
/****************************************************************File Name: status.C  Author: Tian Zhang, CS Dept., Univ. of Wisconsin-Madison, 1995               Copyright(c) 1995 by Tian Zhang                   All Rights ReservedPermission to use, copy and modify this software must be grantedby the author and provided that the above copyright notice appear in all relevant copies and that both that copyright notice and this permission notice appear in all relevant supporting documentations. Comments and additions may be sent the author at zhang@cs.wisc.edu.******************************************************************/#include "global.h"#include "util.h"#include "vector.h"#include "rectangle.h"#include "cfentry.h"#include "cutil.h"#include "parameter.h"#include "status.h"#include "cftree.h"#include "path.h"#include "contree.h"#include "buffer.h"#include "recyqueue.h"#include "hierarchy.h"Stat::Stat(char *str) {// initialize dynamic status informationstrcpy(name,str);Bars=NULL;Phase=1;Passi=0;CurFt=0.0;MemUsed=0;TreeSize=0; PrevEntryCnt = 0;CurrEntryCnt = 0;PrevDataCnt = 0;CurrDataCnt = 0;NoiseCnt = 0;AvgDensity = 0;OldRoot = NULL;NewRoot = NULL;OldLeafHead = NULL;NewLeafHead = NULL;RestLeafPtr = NULL;RestLeafK = 0;SplitBuffer = NULL;OutlierQueue = NULL;OStats=NULL;Entries = NULL;OutlierEntryCnt=0;OutlierTupleCnt=0;}Stat::~Stat() {if (Bars) delete [] Bars;if (NewRoot!=NULL) NewRoot->free_nonleaf(this);if (NewLeafHead!=NULL) NewLeafHead->free_leaf(this);if (SplitBuffer!=NULL) delete SplitBuffer;if (OutlierQueue!=NULL) delete OutlierQueue;if (OStats!=NULL) delete OStats;if (Entries) delete [] Entries;}void Stat::Accept1A(const Entry &ent) {// keep trying until accepted anywaywhile (1) {  // 1: memory available, accepted  if (MemUsed<=MemSize) {	CurrDataCnt+=ent.n;	Ranges+=ent.sx;		// valid only for Stats, not for OStats	OldRoot->AdjustTree(this,ent);	OldRoot=NewRoot;	return;	}  // 2: buffer splits: accepted  if (SplitBuffer!=NULL && !SplitBuffer->Full()) {	CurrDataCnt+=ent.n;	Ranges+=ent.sx;		// valid only for Stats, not for OStats	if (OldRoot->AbsorbEntry2(this,ent)==FALSE) 		SplitBuffer->AddEnt(ent);	return;		}  // 3: memory out and buffer full:   //    increase threshold, throw outliers, rebuild tree,   //    re-try to see if acceptedcout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" "    <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl;  RebuiltTree1A(1);cout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" "    <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl;  if (SplitBuffer!=NULL) ScanSplitBuffer();  if (OutlierQueue!=NULL && OutlierQueue->Full()) ScanOutlierQueue();  }}void Stat::Accept1B(const Entry &ent) {// keep trying until accepted anywaywhile (1) {  // 1: memory available, accepted  if (MemUsed<=MemSize) {	CurrDataCnt+=ent.n;	Ranges+=ent.sx; 	// valid only for Stats, not for OStats	OldRoot->AdjustTree(this,ent);	OldRoot=NewRoot;	return;	}  // 2: buffer splits: accepted  if (SplitBuffer!=NULL && !SplitBuffer->Full()) {	CurrDataCnt+=ent.n;	Ranges+=ent.sx;		// valid only for Stats, not for OStats	if (OldRoot->AbsorbEntry2(this,ent)==FALSE) 		SplitBuffer->AddEnt(ent);	return;		}  // 3: memory out and buffer full:   //    increase threshold, throw outliers, rebuild tree,   //    re-try to see if acceptedcout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" "    <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl;  RebuiltTree1B(1);cout<<"#"<<name<<" "<<Phase<<" "<<Passi<<" "<<MemUsed<<" "    <<CurrDataCnt<<" "<<CurrEntryCnt<<" "<<sqrt(CurFt)<<endl;  if (SplitBuffer!=NULL) ScanSplitBuffer();  if (OutlierQueue!=NULL && OutlierQueue->Full()) ScanOutlierQueue();  }}// TZ: work herevoid Stat::SelectInitFt1() { if (InitFt<=0.0) CurFt=0.0; else CurFt=InitFt*InitFt; }void Stat::SelectFtB(){   if (CurFt==0.0)       	CurFt=pow(AvgDNNScanLeafEntry(BDtype),2.0);   else CurFt=MaxOne(CurFt,pow(AvgDNNScanLeafEntry(BDtype),2.0));}void Stat::SelectFtA(){   if (CurFt==0.0)        	CurFt=pow(AvgDNNScanLeafEntry(BDtype),2.0);   else CurFt=MaxOne(CurFt,pow(AvgDNNScanLeafEntry(BDtype),2.0));}void Stat::RebuiltTree1B(short inc_flag){	AvgDensity=1.0*NewRoot->N()/(1.0*CurrEntryCnt);        if (inc_flag==1 && Passi%StayTimes==0) SelectFtB(); 		Passi++;	switch (RebuiltAlg) { 	 	 case 0: ScanLeaf1A(); break;	 	 case 1: CompactTree1A(); break;	 	 case 2: ShiftTree1A(); break;	 	 }}void Stat::RebuiltTree1A(short inc_flag){	AvgDensity=1.0*NewRoot->N()/(1.0*CurrEntryCnt);        if (inc_flag==1 && Passi%StayTimes==0) SelectFtA(); 		Passi++;	switch (RebuiltAlg) { 	 	 case 0: ScanLeaf1A(); break;	 	 case 1: CompactTree1A(); break;	 	 case 2: ShiftTree1A(); break;	 	 }}// shift the tree:void Stat::ShiftTree1A(){int i;Entry ent;ent.Init(Dimension);Node *tmpnode;MakeNewTree();int height=OldRoot->Depth();Path CurrPath(height), BestPath(height);// initialize CurrPath to the leftmost path (leaf entry) in old treetmpnode=OldRoot;for (i=0; i<height; i++) {	CurrPath.Push(0,tmpnode);	tmpnode=tmpnode->TheChild(0);	}tmpnode=CurrPath.TopLeaf();while (tmpnode!=NULL) {  // Process all entries in the leaf node  for (i=0; i<tmpnode->actsize; i++) {      ent=tmpnode->entry[i];      if (strcmp(name,"outlier")!=0 && 	  ent.n<NoiseRate*AvgDensity &&	  OutlierQueue!=NULL) // write out all qualified outliers    		OutlierQueue->AddEnt(ent,this);      else {          // find BestPath for current entry in new tree 	  BestPath.Reset();	  if (NewRoot->BestFitPath2(this,ent,BestPath)==TRUE)	  	BestPath.AddonPath(this,ent,NewRoot);	  else  CurrPath.AddonLeaf(this,ent,NewRoot);	  }      }  // Process next leaf node  tmpnode=CurrPath.NextRightLeafFreeSpace(this);  if (tmpnode!=NULL) CurrPath.InsertLeaf(this,NewRoot);  }OldRoot=NewRoot;OldLeafHead=NewLeafHead;NewRoot->FreeEmptyNode(this);}// compact the tree:void Stat::CompactTree1A(){int i;Entry ent;ent.Init(Dimension);MarkNewTree();int height = OldRoot->Depth();Path CurrPath(height), BestPath(height);// initialize to the leftmost path (or leaf entry) in the treeNode *tmpnode=OldRoot;for (i=0; i<height; i++) {	CurrPath.Push(0,tmpnode);	tmpnode=tmpnode->TheChild(0);	}while (CurrPath.Exists()) {	// takeoff current path (or leaf entry) from the tree	ent=*(CurrPath.TopLeafEntry());	CurrPath.TakeoffPath(ent);	if (strcmp(name,"outlier")!=0 && 	    ent.n<NoiseRate*AvgDensity &&	    OutlierQueue!=NULL) { // write out all qualified outliers	    OutlierQueue->AddEnt(ent,this);	    CurrPath.CollectSpace(this);	    }	else {// find bestpath for current leaf entry in tree and put back            BestPath.Reset();	    if (OldRoot->BestFitPath2(this,ent,BestPath)==TRUE 		&& BestPath<CurrPath) {	   		BestPath.AddonPath(this,ent,OldRoot);	   		CurrPath.CollectSpace(this);	   		}	        else { CurrPath.AddonPath(this,ent,OldRoot);		       CurrEntryCnt++;		       CurrPath.NextRightPath();		       }	    }	}}// responsible for old leaves// does not guarantee S2<=S1 if T2>=T1.void Stat::ScanLeaf1A(){int k = 0;Entry ent;ent.Init(Dimension);short res=TRUE;StartNewTree();while (res!=FALSE) {     res = NextEntryFreeOldLeafHead(k,ent);      if (res==TRUE) {        if (strcmp(name,"outlier")!=0 && 	    ent.n<NoiseRate*AvgDensity &&	    OutlierQueue!=NULL) // write out all qualified outliers		OutlierQueue->AddEnt(ent,this);	else {		OldRoot->AdjustTree(this,ent);		OldRoot = NewRoot;		}	}      } }void Stat::ScanSplitBuffer(){Entry ent;ent.Init(Dimension);int count=SplitBuffer->CountEntry();while (count>0 && MemUsed<=MemSize) {	SplitBuffer->DeleteEnt(ent);	count--;	OldRoot->AdjustTree(this,ent);	OldRoot=NewRoot;	}while (count>0) {	SplitBuffer->DeleteEnt(ent);	count--;        if (OldRoot->AbsorbEntry2(this,ent)==FALSE)	   if (OutlierQueue!=NULL) 		OutlierQueue->AddEnt(ent,this); 	   else SplitBuffer->AddEnt(ent);	}}void Stat::ScanOutlierQueue(){Entry ent;ent.Init(Dimension);int count=OutlierQueue->CountEntry();// without secondary tree for outliersif (OStats==NULL) {       while (count>0) {	OutlierQueue->DeleteEnt(ent); 	count--;	if (OldRoot->AbsorbEntry1(this,ent)==FALSE)		OutlierQueue->AddEnt(ent,this); 	}      }// with secondary tree for outlierselse {      // if can't absorb by main tree, accept to outlier tree     while (count>0) {	OutlierQueue->DeleteEnt(ent); 	count--;	if (OldRoot->AbsorbEntry1(this,ent)==FALSE) {		switch (OStats->Phase1Scheme) {		  case 0: OStats->Accept1A(ent); break;		  case 1: OStats->Accept1B(ent); break;		  default: print_error("ScanOutlierQueue","Invalid Phase1Scheme"); break;		  }		NoiseCnt+=ent.n;		}	}     }}void Stat::Inherit(const Stat *Stats) {	Dimension=Stats->Dimension;	PageSize=Stats->PageSize;	MemSize=Stats->OutlierTreeSize;	BufferSize=0;	QueueSize=0;	OutlierTreeSize=0;	BDtype=Stats->BDtype;	Ftype=Stats->Ftype;	Phase1Scheme=Stats->Phase1Scheme;	RebuiltAlg=Stats->RebuiltAlg;	StayTimes=Stats->StayTimes;	NoiseRate=Stats->NoiseRate;	Range=Stats->Range;	CFDistr=Stats->CFDistr;	H=Stats->H;	K=Stats->K;	InitFt=Stats->InitFt;	Ft=Stats->Ft;	Gtype=Stats->Gtype;	GDtype=Stats->GDtype;	Qtype=Stats->Qtype;	RefineAlg=Stats->RefineAlg;	NoiseFlag=Stats->NoiseFlag;	MaxRPass=Stats->MaxRPass;	Ranges.Init(Dimension);	}istream& operator>>(istream &fi,Stat *Stats) {fi>>Stats->WMflag;Stats->W.Init(Stats->Dimension);fi>>Stats->W;Stats->M.Init(Stats->Dimension);fi>>Stats->M;fi>>Stats->PageSize;Stats->MemSize/=Stats->PageSize;Stats->BufferSize/=Stats->PageSize;Stats->QueueSize/=Stats->PageSize;Stats->OutlierTreeSize/=Stats->PageSize;fi>>Stats->BDtype;fi>>Stats->Ftype;fi>>Stats->Phase1Scheme;fi>>Stats->RebuiltAlg;fi>>Stats->StayTimes;fi>>Stats->NoiseRate;fi>>Stats->Range;fi>>Stats->CFDistr;fi>>Stats->H;Stats->Bars=new int[Stats->Dimension];for (int i=0;i<Stats->Dimension;i++) 	fi>>Stats->Bars[i];fi>>Stats->K;fi>>Stats->InitFt;fi>>Stats->Ft;fi>>Stats->Gtype;fi>>Stats->GDtype;fi>>Stats->Qtype;fi>>Stats->RefineAlg;fi>>Stats->NoiseFlag;fi>>Stats->MaxRPass;Stats->Ranges.Init(Stats->Dimension);if (Stats->BufferSize>0) 	Stats->SplitBuffer=new BufferClass(Stats);if (Stats->QueueSize>0) Stats->	OutlierQueue=new RecyQueueClass(Stats);if (Stats->OutlierTreeSize>0) {	Stats->OStats=new Stat("outlier"); 	Stats->OStats->Inherit(Stats);	}return fi;}ifstream& operator>>(ifstream &fi,Stat *Stats) {fi>>Stats->WMflag;Stats->W.Init(Stats->Dimension);fi>>Stats->W;Stats->M.Init(Stats->Dimension);fi>>Stats->M;fi>>Stats->PageSize;Stats->MemSize/=Stats->PageSize;Stats->BufferSize/=Stats->PageSize;Stats->QueueSize/=Stats->PageSize;Stats->OutlierTreeSize/=Stats->PageSize;fi>>Stats->BDtype;fi>>Stats->Ftype;fi>>Stats->Phase1Scheme;fi>>Stats->RebuiltAlg;fi>>Stats->StayTimes;fi>>Stats->NoiseRate;fi>>Stats->Range;fi>>Stats->CFDistr;fi>>Stats->H;Stats->Bars=new int[Stats->Dimension];for (int i=0;i<Stats->Dimension;i++) 	fi>>Stats->Bars[i];fi>>Stats->K;fi>>Stats->InitFt;fi>>Stats->Ft;fi>>Stats->Gtype;fi>>Stats->GDtype;fi>>Stats->Qtype;fi>>Stats->RefineAlg;fi>>Stats->NoiseFlag;fi>>Stats->MaxRPass;Stats->Ranges.Init(Stats->Dimension);if (Stats->BufferSize>0) 	Stats->SplitBuffer=new BufferClass(Stats);if (Stats->QueueSize>0) 	Stats->OutlierQueue=new RecyQueueClass(Stats);if (Stats->OutlierTreeSize>0) {	Stats->OStats=new Stat("outlier"); 	Stats->OStats->Inherit(Stats);	}return fi;}ostream& operator<<(ostream &fo,Stat** Stats) {for (int i=0; i<Paras->ntrees; i++)	fo<<Stats[i]<<endl;return fo;}ofstream& operator<<(ofstream &fo,Stat** Stats) {for (int i=0; i<Paras->ntrees; i++)	fo<<Stats[i]<<endl;return fo;}ostream& operator<<(ostream &fo,Stat* Stats) {fo<<"***************Status of "<<Stats->name<<endl;if (strcmp(Stats->name,"outlier")!=0) {fo<<"WMflag\t"<<Stats->WMflag<<endl;fo<<"W\t"<<Stats->W<<endl;fo<<"M\t"<<Stats->M<<endl;}fo<<"Dimension\t"<<Stats->Dimension<<endl;fo<<"PageSize\t"<<Stats->PageSize<<endl;fo<<"MemSize\t"<<Stats->MemSize<<endl;fo<<"BufferSize\t"<<Stats->BufferSize<<endl;fo<<"QueueSize\t"<<Stats->QueueSize<<endl;fo<<"OutlierTreeSize\t"<<Stats->OutlierTreeSize<<endl;fo<<"BDtype\t"<<Stats->BDtype<<endl;fo<<"Ftype\t"<<Stats->Ftype<<endl;fo<<"Phase1Scheme\t"<<Stats->Phase1Scheme<<endl;fo<<"RebuiltAlg\t"<<Stats->RebuiltAlg<<endl;fo<<"StayTimes\t"<<Stats->StayTimes<<endl;fo<<"NoiseRate\t"<<Stats->NoiseRate<<endl;fo<<"Range\t"<<Stats->Range<<endl;fo<<"CFDistr\t"<<Stats->CFDistr<<endl;fo<<"H\t"<<Stats->H<<endl;if (Stats->Bars!=NULL) {	fo<<"Bars\t";

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -