⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 train.tex

📁 该压缩包为最新版htk的源代码,htk是现在比较流行的语音处理软件,请有兴趣的朋友下载使用
💻 TEX
📖 第 1 页 / 共 4 页
字号:
\[    \alpha_j(t) = \left[ \sum_{i=2}^{N-1} \alpha_i(t-1) a_{ij} \right]                     b_j(\bm{o}_t)\]with initial conditions given by \[    \alpha_1(1) = 1\]\[    \alpha_j(1) = a_{1j} b_j(\bm{o}_1)\]for $1<j<N$ and final condition given by\[    \alpha_N(T) = \sum_{i=2}^{N-1} \alpha_i(T) a_{iN}\]The backward probability $\beta_i(t)$ for $1<i<N$ and $T>t \geq 1$ is calculated by the backward recursion\[   \beta_i(t) = \sum_{j=2}^{N-1} a_{ij} b_j(\bm{o}_{t+1}) \beta_j(t+1)\]with initial conditions given by\[   \beta_i(T) = a_{iN}\]for $1<i<N$ and final condition given by\[   \beta_1(1) = \sum_{j=2}^{N-1} a_{1j} b_j(\bm{o}_1) \beta_j(1)\]In the case of embedded training where the HMM spanning the observationsis a composite constructed by concatenating $Q$ subword models, it isassumed that at time $t$, the $\alpha$ and $\beta$values corresponding to the entry state and exit states of a HMMrepresent the forward and backward probabilities at time $t-\Delta t$and $t+\Delta t$, respectively, where $\Delta t$ is small.  The equationsfor calculating $\alpha$ and $\beta$ are then as follows.For the forward probability, the initial conditions are established attime $t=1$ as follows\[   \alpha^{(q)}_{1}(1) =         \left\{ \begin{array}{cl}                              1 & \mbox{if $q=1$} \\                   \alpha^{(q-1)}_1(1)  a^{(q-1)}_{1N_{q-1}} & \mbox{otherwise}                \end{array}        \right.\]\[   \alpha^{(q)}_{j}(1) = a^{(q)}_{1j} b^{(q)}_j(\bm{o}_1)\]\[   \alpha^{(q)}_{N_q}(1) =         \sum_{i=2}^{N_q-1} \alpha^{(q)}_{i}(1) a^{(q)}_{iN_q}\]where the superscript in parentheses refers to the index of the model in the sequence of concatenated models.  All unspecified values of $\alpha$are zero.  For time $t > 1$, \[   \alpha^{(q)}_{1}(t) =         \left\{ \begin{array}{cl}                              0 & \mbox{if $q=1$} \\                   \alpha^{(q-1)}_{N_{q-1}}(t-1) +                    \alpha^{(q-1)}_1(t)  a^{(q-1)}_{1N_{q-1}}& \mbox{otherwise}                \end{array}        \right.\]\[    \alpha^{(q)}_j(t) =           \left[                \alpha^{(q)}_1(t) a^{(q)}_{1j} +                 \sum_{i=2}^{N_q-1} \alpha^{(q)}_{i}(t-1) a^{(q)}_{ij}          \right]          b^{(q)}_j(\bm{o}_t)\]\[   \alpha^{(q)}_{N_q}(t) =         \sum_{i=2}^{N_q-1} \alpha^{(q)}_{i}(t) a^{(q)}_{iN_q}\]For the backward probability, the initial conditions are set at time$t=T$ as follows\[   \beta^{(q)}_{N_q}(T) =         \left\{ \begin{array}{cl}                              1 & \mbox{if $q=Q$} \\                   \beta^{(q+1)}_{N_{q+1}}(T) a^{(q+1)}_{1N_{q+1}} & \mbox{otherwise}                \end{array}        \right.\]\[   \beta^{(q)}_i(T) = a^{(q)}_{iN_q} \beta^{(q)}_{N_q}(T)\]\[   \beta^{(q)}_1(T) = \sum^{N_q - 1}_{j=2}                   a^{(q)}_{1j} b^{(q)}_j(\bm{o}_T) \beta^{(q)}_j(T)\]where once again, all unspecified $\beta$ values are zero.  Fortime $t<T$,\[   \beta^{(q)}_{N_q}(t) =         \left\{ \begin{array}{cl}                              0 & \mbox{if $q=Q$} \\                   \beta^{(q+1)}_1(t+1)+ \beta^{(q+1)}_{N_{q+1}} (t)                                a^{(q+1)}_{1N_{q+1}} & \mbox{otherwise}                \end{array}        \right.\]\[    \beta^{(q)}_i(t) =                 a^{(q)}_{iN_q} \beta^{(q)}_{N_q}(t) +               \sum_{j=2}^{N_q-1} a^{(q)}_{ij}                       b^{(q)}_j(\bm{o}_{t+1}) \beta^{(q)}_{j}(t+1) \]\[   \beta^{(q)}_{1}(t) =         \sum_{j=2}^{N_q-1} a^{(q)}_{1j} b^{(q)}_j(\bm{o}_t)                           \beta^{(q)}_{j}(t) \]The total probability $P = \mbox{prob}(\bm{O} | \lambda)$ can be computedfrom either the forward or backward probabilities\[P = \alpha_N(T) = \beta_1(1)\]\subsection{Single Model Reestimation(\htool{HRest})}\index{model training!isolated unit formulae}In this style of model training, a set of training observations$\bm{O}^r, \;\; 1 \leq r \leq R$ is used to estimate the parameters of a single HMM. Thebasic formula for the reestimation of the transition probabilities is\newcommand{\albe}[1]{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r}                  \alpha^r_#1(t)\beta^r_#1(t)}\[   \hat{a}_{ij} = \frac{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r-1}                  \alpha^r_i(t)a_{ij}b_j(\bm{o}^r_{t+1})\beta^r_j(t+1)                    }{\albe{i}}\]where $1<i<N$ and $1<j<N$ and $P_r$ is the total probability$P = \mbox{prob}(\bm{O}^r | \lambda)$ of the $r$'th observation.  The transitions from the non-emitting entry state are reestimated by\[   \hat{a}_{1j} = \frac{1}{R}                   \sum_{r=1}^R \frac{1}{P_r}                  \alpha^r_j(1) \beta^r_j(1)\]where $1<j<N$ and the transitions from the emitting states to the finalnon-emitting exit state are reestimated by\[      \hat{a}_{iN} = \frac{                  \sum_{r=1}^R \frac{1}{P_r}                  \alpha^r_i(T)\beta^r_i(T)                    }{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r}                  \alpha^r_i(t)\beta^r_i(t)                    }\]where $1<i<N$.For a HMM with $M_s$ mixture components in stream $s$, the means, covariancesand mixture weights for that stream are reestimated as follows.Firstly, the probability of occupying the $m$'th mixture component in stream$s$ at time $t$ for the $r$'th observation is\[  L^r_{jsm}(t) = \frac{1}{P_r} U^r_j(t) c_{jsm} b_{jsm}(\bm{o}^r_{st})                  \beta^r_j(t) b^*_{js}(\bm{o}^r_t)\]where\hequation{  U^r_j(t) = \left\{ \begin{array}{cl}                              a_{1j}             & \mbox{if $t=1$} \\                   \sum^{N-1}_{i=2} \alpha^r_i(t-1)                        a_{ij}         & \mbox{otherwise}                \end{array}        \right.}{urjt}and\[     b^*_{js}(\bm{o}^r_t) = \prod_{k \neq s} b_{jk}(\bm{o}^r_{kt})\]For single Gaussian streams, the probability of mixture component occupancy isequal to the probability of state occupancy and hence it is more efficientin this case to use\[        L^r_{jsm}(t) =  L^r_{j}(t) = \frac{1}{P_r} \alpha_j(t) \beta_j(t)\]Given the above definitions, the re-estimation formulae may now be expressed in terms of $L^r_{jsm}(t)$ as follows.\newcommand{\liksum}[1]{                  \sum_{r=1}^R  \sum_{t=1}^{T_r} L^r_{#1}(t)}\[   \hat{\bm{\mu}}_{jsm} = \frac{                \liksum{jsm}\bm{o}^r_{st}}{\liksum{jsm}}\]\hequation{   \hat{\bm{\Sigma}}_{jsm} = \frac{        \liksum{jsm}(\bm{o}^r_{st} - \hat{\bm{\mu}}_{jsm})                                        (\bm{o}^r_{st} - \hat{\bm{\mu}}_{jsm})'                }{\liksum{jsm}}}{sigjsm}\[   \bm{c}_{jsm} = \frac{\liksum{jsm}}{\liksum{j}}\]\subsection{Embedded Model Reestimation(\htool{HERest})}\index{model training!embedded subword formulae}The re-estimation formulae for the embedded model case haveto be modified to take account of the fact that theentry states can be occupied at any time as a resultof transitions out of the previous model.  The basicformulae for the re-estimation of the transitionprobabilities is\newcommand{\albeq}[1]{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r}                  \alpha^{(q)r}_#1(t)\beta^{(q)r}_#1(t)}\[   \hat{a}^{(q)}_{ij} = \frac{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r-1}      \alpha^{(q)r}_i(t) a^{(q)}_{ij}b^{(q)}_j(\bm{o}^r_{t+1})         \beta^{(q)r}_j(t+1)                    }{\albeq{i}}\]The transitions from the non-emitting entry states into the HMM are re-estimated by\[   \hat{a}^{(q)}_{1j} = \frac{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r-1}      \alpha^{(q)r}_1(t) a^{(q)}_{1j}b^{(q)}_j(\bm{o}^r_{t})         \beta^{(q)r}_j(t)                    }{\albeq{1} + \alpha^{(q)r}_{1}(t)a^{(q)}_{1N_q}\beta^{(q+1)r}_1(t)}\]and the transitions out of the HMM into the non-emitting exit states are re-estimated by\[   \hat{a}^{(q)}_{iN_q} = \frac{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r-1}      \alpha^{(q)r}_i(t) a^{(q)}_{iN_q} \beta^{(q)r}_{N_q}(t)                    }{\albeq{i}}\]Finally, the direct transitions from non-emitting entry to non-emitting exit states arere-estimated by\[   \hat{a}^{(q)}_{1N_q} = \frac{                  \sum_{r=1}^R \frac{1}{P_r}                  \sum_{t=1}^{T_r-1}      \alpha^{(q)r}_1(t) a^{(q)}_{1N_q}         \beta^{(q+1)r}_1(t)                    }{\albeq{i} + \alpha^{(q)r}_{1}(t)a^{(q)}_{1N_q}\beta^{(q+1)r}_1(t)}\]The re-estimation formulae for the output distributions are thesame as for the single model case except for the obvious additional subscript for $q$.  However, theprobability calculations must now allow for transitions from theentry states by changing $U^r_j(t)$ in equation~\ref{e:urjt} to\[  U^{(q)r}_j(t) = \left\{ \begin{array}{cl}                              \alpha^{(q)r}_1(t) a^{(q)}_{1j}   & \mbox{if $t=1$} \\                   \alpha^{(q)r}_1(t) a^{(q)}_{1j} +                    \sum^{N_q-1}_{i=2} \alpha^{(q)r}_i(t-1)                        a^{(q)}_{ij}         & \mbox{otherwise}                \end{array}        \right.\]%%% Local Variables: %%% mode: plain-tex%%% TeX-master: "htkbook"%%% End: 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -