📄 modmlp.m
字号:
function RMSE = modmlp(task, mlp_config, train_opt)% MODMLP % MLP (multilayer perceptron) with modified sigmoidal functions % Roger Jang, Nov 6, 1995% Set up default input argumentsif nargin < 3, train_opt = [0.1 0.1 0.8 500]; if nargin < 2, mlp_config = [2 2 1]; if nargin < 1, task = 'modxor'; % input-output-scaled data end endendtolerance = train_opt(1); % Stop learning once RMSE is below toleranceeta = train_opt(2); % Learning ratealpha = train_opt(3); % Momentum termmax_epoch = train_opt(4); % Max. training epochsin_n = mlp_config(1); % Number of inputshidden_n = mlp_config(2); % Number of hidden unitsout_n = mlp_config(3); % Number of outputsrand('uniform'); % Uniform random numberweight_range = .5; % Range for initial weightseval(['load ' task '.dat']); % Load training dataeval(['trn_data = ' task ';']); % Set "trn_data" to training data[data_n, col_n] = size(trn_data);if in_n + out_n ~= col_n, error('Given data mismatches given I/O numbers!');endIN = trn_data(:, 1:in_n);target = trn_data(:, in_n+1:in_n+out_n);% ====== Initialize weightsW1 = weight_range*2*(rand(in_n+1,hidden_n) - 0.5); % The last row is biasW2 = weight_range*2*(rand(hidden_n+1,out_n) - 0.5); % The last row is bias dW1_old = zeros(size(W1));dW2_old = zeros(size(W2));one = ones(data_n, 1);finished = 0;epoch = 1;RMSE = -ones(max_epoch, 1); % Root mean squared errorpoint_n = 11;p = linspace(-1, 1, point_n);q = linspace(-1, 1, point_n);[pp, qq] = meshgrid(p, q);dense_input = [pp(:) qq(:)];while finished == 0 % Forward pass X1 = tanh([IN one]*W1); % Output of layer 1 (hidden layer) X2 = tanh([X1 one]*W2); % Output of layer 2 (output layer) diff = target - X2; % error % BP for output layer dE_dX2 = -(target - X2); % dE/dX1 dE_dW2 = [X1 one]'*(dE_dX2.*(1+X2).*(1-X2)); dW2 = -eta*dE_dW2 + alpha*dW2_old; dW2_old = dW2; W2 = W2 + dW2; % BP for hidden layer dE_dX1 = dE_dX2.*(1-X2).*(1+X2)*W2(1:hidden_n,:)'; % dE/dX1 dE_dW1 = [IN one]'*(dE_dX1.*(1+X1).*(1-X1)); dW1 = -eta*dE_dW1 + alpha*dW1_old; dW1_old = dW1; W1 = W1 + dW1; % Check if finished RMSE(epoch) = sqrt(sum(sum(diff.^2))/length(diff(:))); if RMSE(epoch) < tolerance finished = 1; end % Print out RMSE fprintf('epoch %.0f: RMSE = %.3f\n',epoch, RMSE(epoch)); % Jump out of loop if max epoch is reached if epoch == max_epoch, break; end % Animation if nargin == 0, dense_output = tanh([tanh([dense_input ones(point_n^2,1)]*W1) ones(point_n^2,1)]*W2); new_z = reshape(dense_output, point_n, point_n); if epoch == 1; meshH = mesh(pp, qq, new_z); axis([-1 1 -1 1 -1 1]); view([20 50]); set(meshH, 'erasemode', 'background'); else set(meshH, 'zdata', new_z); end drawnow; end epoch = epoch + 1;endset(gca, 'box', 'on');RMSE(find(RMSE==-1)) = []; % Get rid of extra elements in RMSE.weight_file = [task '.wts'];eval(['save ',weight_file,' W1 W2']); % Save the trained weights to a filefprintf('\nTotal number of epochs: %g\n', epoch-1);fprintf('Final RMSE: %g\n', RMSE(epoch-1));figure; plot(1:length(RMSE), RMSE, '-', 1:length(RMSE), RMSE, 'o');xlabel('Epochs'); ylabel('RMSE (Root mean squared error)');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -