📄 tanmlp_b.m
字号:
function [W1, W2, RMSE] = tanmlp(trn_data, mlp_config, train_opt, disp_opt)
% TANMLP Steepest descent for MLP with hyperbolic tangent activation.
% [W1, W2, RMSE] = tanmlp(trn_data, mlp_config, train_opt).
%
% See also MLPDM1 and MLPDM2.
% Roger Jang, Nov 6, 1995
% Set up default input arguments
if nargin < 4, disp_opt = 1; end
if nargin < 3, train_opt = [0.1 0.1 0.1 500 0]; end
if nargin < 2, mlp_config = [2 2 1]; end
if nargin < 1, trn_data = [-1 -1 -1; -1 1 1; 1 -1 1; 1 1 -1]; end
error_goal = train_opt(1); % Stop if RMSE is below error_goal
eta = train_opt(2); % Learning rate
alpha = train_opt(3); % Momentum term
max_epoch = train_opt(4); % Max. training epochs
normalized_SD = train_opt(5); % Normalized SD is used if this is 1
in_n = mlp_config(1); % Number of inputs
hidden_n = mlp_config(2); % Number of hidden units
out_n = mlp_config(3); % Number of outputs
rand('uniform'); % Uniform random number
weight_range = .5; % Range for initial weights
[data_n, col_n] = size(trn_data);
if in_n + out_n ~= col_n,
error('Given data mismatches given I/O numbers!');
end
X0 = trn_data(:, 1:in_n); % input
T = trn_data(:, in_n+1:in_n+out_n); % target
% ====== Initialize weights
W1 = weight_range*2*(rand(in_n+1,hidden_n) - 0.5); % last row: bias
W2 = weight_range*2*(rand(hidden_n+1,out_n) - 0.5); % last row: bias
dW1_old = zeros(size(W1));
dW2_old = zeros(size(W2));
one = ones(data_n, 1);
RMSE = -ones(max_epoch, 1); % Root mean squared error
epoch = 1;
while 1,
% Forward pass
X1 = tanh([X0 one]*W1); % Output of layer 1 (hidden layer)
X2 = tanh([X1 one]*W2); % Output of layer 2 (output layer)
diff = T - X2; % error
RMSE(epoch) = sqrt(sum(sum(diff.^2))/length(diff(:)));
if disp_opt==1,
fprintf('epoch %.0f: RMSE = %.3f\n',epoch, RMSE(epoch));
end
% Check if finished
if (RMSE(epoch)<error_goal | epoch==max_epoch), break; end
% Backward pass for the output layer
dE_dX2 = -2*(T - X2); % dE/dX1
dE_dW2 = [X1 one]'*(dE_dX2.*(1+X2).*(1-X2));
% Backward pass for the hidden layer
dE_dX1 = dE_dX2.*(1-X2).*(1+X2)*W2(1:hidden_n,:)'; % dE/dX1
dE_dW1 = [X0 one]'*(dE_dX1.*(1+X1).*(1-X1));
if normalized_SD == 0,
leng = 1; % Simple steepest descent
else
leng = norm([dE_dW1(:); dE_dW2(:)]); % Normalized SD
end
dW2 = -eta*dE_dW2/leng + alpha*dW2_old;
dW1 = -eta*dE_dW1/leng + alpha*dW1_old;
W2 = W2 + dW2;
W1 = W1 + dW1;
dW2_old = dW2;
dW1_old = dW1;
% Update learning rate (or step size if normalized SD is used)
eta = adjeta(eta, RMSE(1:epoch));
epoch = epoch + 1;
end
RMSE(find(RMSE==-1)) = []; % Get rid of extra elements in RMSE.
if disp_opt==1,
fprintf('\nTotal number of epochs: %g\n', epoch);
fprintf('Final RMSE: %g\n', RMSE(epoch));
figure; plot(1:length(RMSE), RMSE, '-', 1:length(RMSE), RMSE, 'o');
xlabel('Epochs'); ylabel('RMSE (Root mean squared error)');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -