📄 serial.h
字号:
// enabled these registers become the least significant and most
// significant bytes of the divisor value.
//
#define SERIAL_LCR_DLAB 0x80
//
// This defines the bit used to control whether the device is sending
// a break. When this bit is set the device is sending a space (logic 0).
//
// Most protocols will assume that this is a hangup.
//
#define SERIAL_LCR_BREAK 0x40
//
// These defines are used to set the line control register.
//
#define SERIAL_5_DATA ((UCHAR)0x00)
#define SERIAL_6_DATA ((UCHAR)0x01)
#define SERIAL_7_DATA ((UCHAR)0x02)
#define SERIAL_8_DATA ((UCHAR)0x03)
#define SERIAL_DATA_MASK ((UCHAR)0x03)
#define SERIAL_1_STOP ((UCHAR)0x00)
#define SERIAL_1_5_STOP ((UCHAR)0x04) // Only valid for 5 data bits
#define SERIAL_2_STOP ((UCHAR)0x04) // Not valid for 5 data bits
#define SERIAL_STOP_MASK ((UCHAR)0x04)
#define SERIAL_NONE_PARITY ((UCHAR)0x00)
#define SERIAL_ODD_PARITY ((UCHAR)0x08)
#define SERIAL_EVEN_PARITY ((UCHAR)0x18)
#define SERIAL_MARK_PARITY ((UCHAR)0x28)
#define SERIAL_SPACE_PARITY ((UCHAR)0x38)
#define SERIAL_PARITY_MASK ((UCHAR)0x38)
//
// These masks define access the modem control register.
//
//
// This bit controls the data terminal ready (DTR) line. When
// this bit is set the line goes to logic 0 (which is then inverted
// by normal hardware). This is normally used to indicate that
// the device is available to be used. Some odd hardware
// protocols (like the kernel debugger) use this for handshaking
// purposes.
//
#define SERIAL_MCR_DTR 0x01
//
// This bit controls the ready to send (RTS) line. When this bit
// is set the line goes to logic 0 (which is then inverted by the normal
// hardware). This is used for hardware handshaking. It indicates that
// the hardware is ready to send data and it is waiting for the
// receiving end to set clear to send (CTS).
//
#define SERIAL_MCR_RTS 0x02
//
// This bit is used for general purpose output.
//
#define SERIAL_MCR_OUT1 0x04
//
// This bit is used for general purpose output.
//
#define SERIAL_MCR_OUT2 0x08
//
// This bit controls the loopback testing mode of the device. Basically
// the outputs are connected to the inputs (and vice versa).
//
#define SERIAL_MCR_LOOP 0x10
//
// These masks define access to the line status register. The line
// status register contains information about the status of data
// transfer. The first five bits deal with receive data and the
// last two bits deal with transmission. An interrupt is generated
// whenever bits 1 through 4 in this register are set.
//
//
// This bit is the data ready indicator. It is set to indicate that
// a complete character has been received. This bit is cleared whenever
// the receive buffer register has been read.
//
#define SERIAL_LSR_DR 0x01
//
// This is the overrun indicator. It is set to indicate that the receive
// buffer register was not read befor a new character was transferred
// into the buffer. This bit is cleared when this register is read.
//
#define SERIAL_LSR_OE 0x02
//
// This is the parity error indicator. It is set whenever the hardware
// detects that the incoming serial data unit does not have the correct
// parity as defined by the parity select in the line control register.
// This bit is cleared by reading this register.
//
#define SERIAL_LSR_PE 0x04
//
// This is the framing error indicator. It is set whenever the hardware
// detects that the incoming serial data unit does not have a valid
// stop bit. This bit is cleared by reading this register.
//
#define SERIAL_LSR_FE 0x08
//
// This is the break interrupt indicator. It is set whenever the data
// line is held to logic 0 for more than the amount of time it takes
// to send one serial data unit. This bit is cleared whenever the
// this register is read.
//
#define SERIAL_LSR_BI 0x10
//
// This is the transmit holding register empty indicator. It is set
// to indicate that the hardware is ready to accept another character
// for transmission. This bit is cleared whenever a character is
// written to the transmit holding register.
//
#define SERIAL_LSR_THRE 0x20
//
// This bit is the transmitter empty indicator. It is set whenever the
// transmit holding buffer is empty and the transmit shift register
// (a non-software accessable register that is used to actually put
// the data out on the wire) is empty. Basically this means that all
// data has been sent. It is cleared whenever the transmit holding or
// the shift registers contain data.
//
#define SERIAL_LSR_TEMT 0x40
//
// This bit indicates that there is at least one error in the fifo.
// The bit will not be turned off until there are no more errors
// in the fifo.
//
#define SERIAL_LSR_FIFOERR 0x80
//
// These masks are used to access the modem status register.
// Whenever one of the first four bits in the modem status
// register changes state a modem status interrupt is generated.
//
//
// This bit is the delta clear to send. It is used to indicate
// that the clear to send bit (in this register) has *changed*
// since this register was last read by the CPU.
//
#define SERIAL_MSR_DCTS 0x01
//
// This bit is the delta data set ready. It is used to indicate
// that the data set ready bit (in this register) has *changed*
// since this register was last read by the CPU.
//
#define SERIAL_MSR_DDSR 0x02
//
// This is the trailing edge ring indicator. It is used to indicate
// that the ring indicator input has changed from a low to high state.
//
#define SERIAL_MSR_TERI 0x04
//
// This bit is the delta data carrier detect. It is used to indicate
// that the data carrier bit (in this register) has *changed*
// since this register was last read by the CPU.
//
#define SERIAL_MSR_DDCD 0x08
//
// This bit contains the (complemented) state of the clear to send
// (CTS) line.
//
#define SERIAL_MSR_CTS 0x10
//
// This bit contains the (complemented) state of the data set ready
// (DSR) line.
//
#define SERIAL_MSR_DSR 0x20
//
// This bit contains the (complemented) state of the ring indicator
// (RI) line.
//
#define SERIAL_MSR_RI 0x40
//
// This bit contains the (complemented) state of the data carrier detect
// (DCD) line.
//
#define SERIAL_MSR_DCD 0x80
//
// This should be more than enough space to hold then
// numeric suffix of the device name.
//
#define DEVICE_NAME_DELTA 20
//
// Default xon/xoff characters.
//
#define SERIAL_DEF_XON 0x11
#define SERIAL_DEF_XOFF 0x13
//
// Reasons that recption may be held up.
//
#define SERIAL_RX_DTR ((ULONG)0x01)
#define SERIAL_RX_XOFF ((ULONG)0x02)
#define SERIAL_RX_RTS ((ULONG)0x04)
#define SERIAL_RX_DSR ((ULONG)0x08)
//
// Reasons that transmission may be held up.
//
#define SERIAL_TX_CTS ((ULONG)0x01)
#define SERIAL_TX_DSR ((ULONG)0x02)
#define SERIAL_TX_DCD ((ULONG)0x04)
#define SERIAL_TX_XOFF ((ULONG)0x08)
#define SERIAL_TX_BREAK ((ULONG)0x10)
//
// These values are used by the routines that can be used
// to complete a read (other than interval timeout) to indicate
// to the interval timeout that it should complete.
//
#define SERIAL_COMPLETE_READ_CANCEL ((LONG)-1)
#define SERIAL_COMPLETE_READ_TOTAL ((LONG)-2)
#define SERIAL_COMPLETE_READ_COMPLETE ((LONG)-3)
#if 0
#define SerialCompleteRequest(PDevExt, PIrp, PriBoost) \
{ \
IoCompleteRequest((PIrp), (PriBoost)); \
SerialIRPEpilogue((PDevExt)); \
}
#else
#define SerialCompleteRequest(PDevExt, PIrp, PriBoost) \
{ \
IoCompleteRequest((PIrp), (PriBoost)); \
UsbCom_DecrementIoCount(PDevExt->DeviceObject); \
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -