📄 cpp5.y
字号:
%{
/* Copyright (C) 1989-1991 James A. Roskind, All rights reserved.
This grammar was developed and written by James A. Roskind.
Copying of this grammar description, as a whole, is permitted
providing this notice is intact and applicable in all complete
copies. Translations as a whole to other parser generator input
languages (or grammar description languages) is permitted
provided that this notice is intact and applicable in all such
copies, along with a disclaimer that the contents are a
translation. The reproduction of derived text, such as modified
versions of this grammar, or the output of parser generators, is
permitted, provided the resulting work includes the copyright
notice "Portions Copyright (c) 1989, 1990 James A. Roskind".
Derived products, such as compilers, translators, browsers, etc.,
that use this grammar, must also provide the notice "Portions
Copyright (c) 1989, 1990 James A. Roskind" in a manner
appropriate to the utility, and in keeping with copyright law
(e.g.: EITHER displayed when first invoked/executed; OR displayed
continuously on display terminal; OR via placement in the object
code in form readable in a printout, with or near the title of
the work, or at the end of the file). No royalties, licenses or
commissions of any kind are required to copy this grammar, its
translations, or derivative products, when the copies are made in
compliance with this notice. Persons or corporations that do make
copies in compliance with this notice may charge whatever price
is agreeable to a buyer, for such copies or derivative works.
THIS GRAMMAR IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.
James A. Roskind
Independent Consultant
516 Latania Palm Drive
Indialantic FL, 32903
(407)729-4348
jar@hq.ileaf.com
---end of copyright notice---
MOTIVATION-
My goal is to see software developers adopt this grammar as a
standard until such time as a better standard is accessible. The
only way to get it to become a standard, is to be sure that people
know that derivations are based on a specific work. The intent of
releasing this grammar is to provide a publicly accessible standard
grammar for C++. The intent of the copyright notice is to allow
arbitrary commercial and non-commercial use of the grammar, as long
as reference is given to the original standard. Without reference to
a specific standard, many alternative grammars would develop. By
referring to the standard, this grammar is given publicity, which
should lead to further use in compatible products and systems. The
benefits of such a standard to commercial products (browsers,
beautifiers, translators, compilers, ...) should be obvious to the
developers, in that other compatible products will emerge, and the
value of all conforming products will rise. Most developers are
aware of the value of acquiring a fairly complete grammar for a
language, and the copyright notice (and the resulting affiliation
with my work) should not be too high a price to pay. By copyrighting
this grammar, I have some minor control over what this standard is,
and I can (hopefully) keep it from degrading without my approval. I
will consistently attempt to provide upgraded grammars that are
compliant with the current art, and the ANSI C++ Committee
recommendation in particular. A developer is never prevented from
modifying the grammar to improve it in whatever way is seen fit.
There is also no restriction on the sale of copies, or derivative
works, providing the requests in the copyright notice are satisfied.
If you are not "copying" my work, but are rather only abstracting
some of the standard, an acknowledgment with references to such a
standard would be appreciated. Specifically, agreements with this
standard as to the resolution of otherwise ambiguous constructs,
should be noted.
Simply put: "make whatever use you would like of the grammar, but
include the ``portions Copyright ...'' as a reference to this
standard."
*/
/* Last modified 7/4/91, Version 2.0 */
/* File CPP5.Y is translated by YACC to Y.TAB.C */
/* ACKNOWLEDGMENT: Without Bjarne Stroustrup and his many co-workers
at Bell Labs, there would be no C++ Language for which to provide a
syntax description. Bjarne has also been especially helpful and open
in discussions, and by permitting me to review his texts prior to
their publication, allowed me a wonderful vantage point of clarity.
Without the effort expended by the ANSI C standardizing committee, I
would have been lost. Although the ANSI C standard does not include
a fully disambiguated syntax description, the committee has at least
provided most of the disambiguating rules in narratives. This C++
grammar is intended to be a superset of an ANSI C compatible grammar
that is provided in an related file.
Several reviewers have also recently critiqued this grammar, the
related C grammar, and or assisted in discussions during it's
preparation. These reviewers are certainly not responsible for the
errors I have committed here, but they are responsible for allowing
me to provide fewer errors. These colleagues include: Bruce
Blodgett, Mark Langley, Joe Fialli, Greg Perkins, Ron Guilmette, and
Eric Krohn. */
/* Required fixes from last release :
done: 0) Allow direct call to destructors
done: 1) Allow placement of declarations in labeled statements. The
easiest fix involves using a larger variance from the C grammar, and
simply making "statement" include declarations. Note that it should
also be legal for declarations to be in the branches of if
statements, as long as there is no other code in the block (I think).
Consider:
...
{
if (0 == a)
int b=5;
else
int c=4;
}
1) template support: Not done: pending syntax specification from
ANSI. (This looks like a major effort, as ANSI has decided to extend
the "TYPEDEFname"-feedback-to-the-lexer-hack to support template
names as a new kind of terminal token.)
2) exception handling: Not done: pending syntax specification from
ANSI (but it doesn't look hard)
done: 3) Support nested types, including identifier::name, where we
realize that identifier was a hidden type. Force the lexer to keep
pace in this situation. This will require an extension of the
yacc-lex feedback loop.
done: 4) Support nested types even when derivations are used in class
definitions.
5) Provide advanced tutorial on YACC conflicts: almost done in
documentation about machine generated documentation.
done: 6) Allow declaration specifiers to be left out of declarations
at file and structure scope so that operator conversion functions can
be declared and/or defined. Note that checking to see that it was a
function type that does not require declaration_specifiers is now a
constraint check, and not a syntax issue. Within function body
scopes, declaration specifiers are required, and this is critical to
distinguishing expressions.
*/
%}
/*
Interesting ambiguity:
Usually
typename ( typename2 ) ...
or
typename ( typename2 [4] ) ...
etc.
is a redeclaration of typename2.
Inside a structure elaboration, it is sometimes the declaration of a
constructor! Note, this only counts if typename IS the current
containing class name. (Note this can't conflict with ANSI C because
ANSI C would call it a redefinition, but claim it is semantically
illegal because you can't have a member declared the same type as the
containing struct!) Since the ambiguity is only reached when a ';' is
found, there is no problem with the fact that the semantic
interpretation is providing the true resolution. As currently
implemented, the constructor semantic actions must be able to process
an ordinary declaration. I may reverse this in the future, to ease
semantic implementation.
*/
/*
INTRO TO ANSI C GRAMMAR (provided in a separate file):
The refined grammar resolves several typedef ambiguities in the draft
proposed ANSI C standard syntax down to 1 shift/reduce conflict, as
reported by a YACC process. Note that the one shift reduce conflicts
is the traditional if-if-else conflict that is not resolved by the
grammar. This ambiguity can be removed using the method described in
the Dragon Book (2nd edition), but this does not appear worth the
effort.
There was quite a bit of effort made to reduce the conflicts to this
level, and an additional effort was made to make the grammar quite
similar to the C++ grammar being developed in parallel. Note that
this grammar resolves the following ANSI C ambiguities:
ANSI C section 3.5.6, "If the [typedef name] is redeclared at an
inner scope, the type specifiers shall not be omitted in the inner
declaration". Supplying type specifiers prevents consideration of T
as a typedef name in this grammar. Failure to supply type specifiers
forced the use of the TYPEDEFname as a type specifier. This is taken
to an (unnecessary) extreme by this implementation. The ambiguity is
only a problem with the first declarator in a declaration, but we
restrict ALL declarators whenever the users fails to use a
type_specifier.
ANSI C section 3.5.4.3, "In a parameter declaration, a single typedef
name in parentheses is taken to be an abstract declarator that
specifies a function with a single parameter, not as redundant
parentheses around the identifier". This is extended to cover the
following cases:
typedef float T;
int noo(const (T[5]));
int moo(const (T(int)));
...
Where again the '(' immediately to the left of 'T' is interpreted as
being the start of a parameter type list, and not as a redundant
paren around a redeclaration of T. Hence an equivalent code fragment
is:
typedef float T;
int noo(const int identifier1 (T identifier2 [5]));
int moo(const int identifier1 (T identifier2 (int identifier3)));
...
*/
%{
/*************** Includes and Defines *****************************/
#define YYDEBUG_LEXER_TEXT (yylval) /* our lexer loads this up each time.
We are telling the graphical debugger
where to find the spelling of the
tokens.*/
#define YYDEBUG 1 /* get the pretty debugging code to compile*/
#define YYSTYPE char * /* interface with flex: should be in header file */
/*************** Standard ytab.c continues here *********************/
%}
/*************************************************************************/
/* This group is used by the C/C++ language parser */
%token AUTO DOUBLE INT STRUCT
%token BREAK ELSE LONG SWITCH
%token CASE ENUM REGISTER TYPEDEF
%token CHAR EXTERN RETURN UNION
%token CONST FLOAT SHORT UNSIGNED
%token CONTINUE FOR SIGNED VOID
%token DEFAULT GOTO SIZEOF VOLATILE
%token DO IF STATIC WHILE
/* The following are used in C++ only. ANSI C would call these IDENTIFIERs */
%token NEW DELETE
%token THIS
%token OPERATOR
%token CLASS
%token PUBLIC PROTECTED PRIVATE
%token VIRTUAL FRIEND
%token INLINE OVERLOAD
/* ANSI C Grammar suggestions */
%token IDENTIFIER STRINGliteral
%token FLOATINGconstant INTEGERconstant CHARACTERconstant
%token OCTALconstant HEXconstant
/* New Lexical element, whereas ANSI C suggested non-terminal */
%token TYPEDEFname
/* Multi-Character operators */
%token ARROW /* -> */
%token ICR DECR /* ++ -- */
%token LS RS /* << >> */
%token LE GE EQ NE /* <= >= == != */
%token ANDAND OROR /* && || */
%token ELLIPSIS /* ... */
/* Following are used in C++, not ANSI C */
%token CLCL /* :: */
%token DOTstar ARROWstar/* .* ->* */
/* modifying assignment operators */
%token MULTassign DIVassign MODassign /* *= /= %= */
%token PLUSassign MINUSassign /* += -= */
%token LSassign RSassign /* <<= >>= */
%token ANDassign ERassign ORassign /* &= ^= |= */
/*************************************************************************/
%start translation_unit
/*************************************************************************/
%%
/*********************** CONSTANTS *********************************/
constant:
INTEGERconstant
| FLOATINGconstant
/* We are not including ENUMERATIONconstant here because we
are treating it like a variable with a type of "enumeration
constant". */
| OCTALconstant
| HEXconstant
| CHARACTERconstant
;
string_literal_list:
STRINGliteral
| string_literal_list STRINGliteral
;
/************************* EXPRESSIONS ********************************/
/* Note that I provide a "scope_opt_identifier" that *cannot*
begin with ::. This guarantees we have a viable declarator, and
helps to disambiguate :: based uses in the grammar. For example:
...
{
int (* ::b()); // must be an expression
int (T::b); // officially a declaration, which fails on constraint grounds
This *syntax* restriction reflects the current syntax in the ANSI
C++ Working Papers. This means that it is *incorrect* for
parsers to misparse the example:
int (* ::b()); // must be an expression
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -