📄 compleftpoly.m
字号:
% function [degrees,lambda,stats]=CompLeftPoly(R,n);
%
% Computes degree distributions from the right-regular
% family
%
% f(x;n) = rho(x;n) = x^n.
%
% Uses explicit formulas for the Taylor
% coefficients of g(x)=1-(1-x)^{1/n}
% Average and maximal right degrees coincide: a_r=n+1=N
%
% Input: Rate 0<R<1 and parameter n>0
%
% Output:
% degrees=[a_r a_l N M] average and maximal degrees
% of right and left degree distributions
% lambda 1xM array of left degrees
% stats [delta,epsilon,mu,Delta,Lambda2]
% distances to capacity 1-R, comparison to
% lower bounds, and fraction of degree 2 variable
% nodes Lambda2=lambda2*a_l/2
%
% Author: P. Oswald
% Last changed: 10/4/2002
function [degrees,lambda,stats]=CompLeftPoly(R,n);
%
% Setting a maximum for anticipated M (to avoid serious
% rounding problems and endless computation)
Mmax=20000;
%
% Computation of a_r, N
N=n+1;ar=N;
%
% Computation of a_l, M, lambda, and delta
% by implementing Step (2) and (3) of Algorithm 1.
% This is based on hand-derived recursions for the Taylor coefficients
% g_k of g, which lead to recursions for s_k and sigma_k and finally
% to finding t such that hat(I)(t)=1/a_l where a_l=a_r*(1-R)
% is the average degree of the left (variable) nodes.
al=ar*(1-R);a=1/n;
c=a;sk=c;c1=c/2;sigmak=c1;lambda=[];
if al<2
disp('Average degree of left nodes too small (decrease R or increase a)');
M=0;lambda=[];stats=[];
else
if al==2
lambda=1;M=2;delta=c;
else
m=2;q=sigmak/sk;
while q*al>1&m<Mmax
lambda=[lambda c];c=c1*(m-1-a);sk=sk+c;
m=m+1;c1=c/m;sigmak=sigmak+c1;q0=q;q=sigmak/sk;
end
if m==Mmax&q*al>1
disp('M larger than allowed (reduce n or increase Mmax)');
M=m;lambda=[];stats=[];
else
M=m;t1=(al*sigmak-sk)/(al*c1-c);
delta=(sk-t1*c);lambda=[lambda (1-t1)*c]/delta;
end
end
%
% Computation of output
epsilon=1-delta/(1-R);
b=ar*log(R);mu=b/log(epsilon);Delta=epsilon/exp(b);
Lambda2=lambda(1)*al/2;stats=[delta epsilon mu Delta Lambda2];
end
degrees=[ar al N M];
% End CompLeftPoly.m
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -