📄 g72x.c
字号:
/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g72x.c
*
* Common routines for G.721 and G.723 conversions.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "g72x.h"
#include "g72x_priv.h"
static
short power2 [15] =
{ 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
} ;
/*
* quan()
*
* quantizes the input val against the table of size short integers.
* It returns i if table[i - 1] <= val < table[i].
*
* Using linear search for simple coding.
*/
static
int quan (int val, short *table, int size)
{
int i;
for (i = 0; i < size; i++)
if (val < *table++)
break;
return (i);
}
/*
* fmult()
*
* returns the integer product of the 14-bit integer "an" and
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
static
int fmult (int an, int srn)
{
short anmag, anexp, anmant;
short wanexp, wanmant;
short retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
anexp = quan(anmag, power2, 15) - 6;
anmant = (anmag == 0) ? 32 :
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
/*
** The original was :
** wanmant = (anmant * (srn & 0x37) + 0x30) >> 4 ;
** but could see no valid reason for the + 0x30.
** Removed it and it improved the SNR of the codec.
*/
wanmant = (anmant * (srn & 0x37)) >> 4 ;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
(wanmant >> -wanexp);
return (((an ^ srn) < 0) ? -retval : retval);
}
/*
* private_init_state()
*
* This routine initializes and/or resets the G72x_PRIVATE structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
void private_init_state (G72x_STATE *state_ptr)
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
for (cnta = 0; cnta < 2; cnta++) {
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
state_ptr->sr[cnta] = 32;
}
for (cnta = 0; cnta < 6; cnta++) {
state_ptr->b[cnta] = 0;
state_ptr->dq[cnta] = 32;
}
state_ptr->td = 0;
} /* private_init_state */
int g72x_reader_init (G72x_DATA *data, int codec)
{ G72x_STATE *pstate ;
if (sizeof (data->private) < sizeof (G72x_STATE))
{ /* This is for safety only. */
return 1 ;
} ;
memset (data, 0, sizeof (G72x_DATA)) ;
pstate = (G72x_STATE*) data->private ;
private_init_state (pstate) ;
pstate->encoder = NULL ;
switch (codec)
{ case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
pstate->decoder = g723_16_decoder ;
data->blocksize = G723_16_BYTES_PER_BLOCK ;
data->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 2 ;
break ;
case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
pstate->decoder = g723_24_decoder ;
data->blocksize = G723_24_BYTES_PER_BLOCK ;
data->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 3 ;
break ;
case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
pstate->decoder = g721_decoder ;
data->blocksize = G721_32_BYTES_PER_BLOCK ;
data->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 4 ;
break ;
case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
pstate->decoder = g723_40_decoder ;
data->blocksize = G721_40_BYTES_PER_BLOCK ;
data->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 5 ;
break ;
default : return 1 ;
} ;
return 0 ;
} /* g72x_reader_init */
int g72x_writer_init (G72x_DATA *data, int codec)
{ G72x_STATE *pstate ;
if (sizeof (data->private) < sizeof (G72x_STATE))
{ /* This is for safety only. Gets optimised out. */
return 1 ;
} ;
memset (data, 0, sizeof (G72x_DATA)) ;
pstate = (G72x_STATE*) data->private ;
private_init_state (pstate) ;
pstate->decoder = NULL ;
switch (codec)
{ case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
pstate->encoder = g723_16_encoder ;
data->blocksize = G723_16_BYTES_PER_BLOCK ;
data->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 2 ;
break ;
case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
pstate->encoder = g723_24_encoder ;
data->blocksize = G723_24_BYTES_PER_BLOCK ;
data->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 3 ;
break ;
case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
pstate->encoder = g721_encoder ;
data->blocksize = G721_32_BYTES_PER_BLOCK ;
data->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 4 ;
break ;
case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
pstate->encoder = g723_40_encoder ;
data->blocksize = G721_40_BYTES_PER_BLOCK ;
data->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 5 ;
break ;
default : return 1 ;
} ;
return 0 ;
} /* g72x_writer_init */
int unpack_bytes (G72x_DATA *data, int bits)
{ unsigned int in_buffer = 0 ;
unsigned char in_byte ;
int k, in_bits = 0, bindex = 0 ;
for (k = 0 ; bindex <= data->blocksize && k < G72x_BLOCK_SIZE ; k++)
{ if (in_bits < bits)
{ in_byte = data->block [bindex++] ;
in_buffer |= (in_byte << in_bits);
in_bits += 8;
}
data->samples [k] = in_buffer & ((1 << bits) - 1);
in_buffer >>= bits;
in_bits -= bits;
} ;
return k ;
} /* unpack_bytes */
int g72x_decode_block (G72x_DATA *data)
{ G72x_STATE *pstate ;
int k, count ;
pstate = (G72x_STATE*) data->private ;
count = unpack_bytes (data, pstate->codec_bits) ;
for (k = 0 ; k < count ; k++)
data->samples [k] = pstate->decoder (data->samples [k], pstate) ;
return 0 ;
} /* g72x_decode_block */
int pack_bytes (G72x_DATA *data, int bits)
{
unsigned int out_buffer = 0 ;
int k, bindex = 0, out_bits = 0 ;
unsigned char out_byte ;
for (k = 0 ; k < G72x_BLOCK_SIZE ; k++)
{ out_buffer |= (data->samples [k] << out_bits) ;
out_bits += bits ;
if (out_bits >= 8)
{ out_byte = out_buffer & 0xFF ;
out_bits -= 8 ;
out_buffer >>= 8 ;
data->block [bindex++] = out_byte ;
}
} ;
return bindex ;
} /* pack_bytes */
int g72x_encode_block (G72x_DATA *data)
{ G72x_STATE *pstate ;
int k, count ;
pstate = (G72x_STATE*) data->private ;
for (k = 0 ; k < data->samplesperblock ; k++)
data->samples [k] = pstate->encoder (data->samples [k], pstate) ;
count = pack_bytes (data, pstate->codec_bits) ;
return count ;
} /* g72x_encode_block */
/*
* predictor_zero()
*
* computes the estimated signal from 6-zero predictor.
*
*/
int predictor_zero (G72x_STATE *state_ptr)
{
int i;
int sezi;
sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
for (i = 1; i < 6; i++) /* ACCUM */
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
return (sezi);
}
/*
* predictor_pole()
*
* computes the estimated signal from 2-pole predictor.
*
*/
int predictor_pole(G72x_STATE *state_ptr)
{
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -