📄 stl_alloc.h
字号:
/* * Copyright (c) 1996-1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. *//* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */#ifndef __SGI_STL_INTERNAL_ALLOC_H#define __SGI_STL_INTERNAL_ALLOC_H#ifdef __SUNPRO_CC# define __PRIVATE public // Extra access restrictions prevent us from really making some things // private.#else# define __PRIVATE private#endif#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG# define __USE_MALLOC#endif// This implements some standard node allocators. These are// NOT the same as the allocators in the C++ draft standard or in// in the original STL. They do not encapsulate different pointer// types; indeed we assume that there is only one pointer type.// The allocation primitives are intended to allocate individual objects,// not larger arenas as with the original STL allocators.#ifndef __THROW_BAD_ALLOC
# ifndef UNDER_CE
# if defined(__STL_NO_BAD_ALLOC) || !defined(__STL_USE_EXCEPTIONS)
# include <stdio.h>
# include <stdlib.h>
# define __THROW_BAD_ALLOC fprintf(stderr, "out of memory\n"); exit(1)
# else /* Standard conforming out-of-memory handling */
# include <new>
# define __THROW_BAD_ALLOC throw std::bad_alloc()
# endif
# endif /* UNDER_CE */
#endif
#ifndef UNDER_CE
#include <stddef.h>
#else
#include <wce_defs.h>
#endif /* UNDER_CE */
#include <stdlib.h>
#include <string.h>
#ifndef UNDER_CE
#include <assert.h>
#endif
#ifndef __RESTRICT# define __RESTRICT#endif#ifdef __STL_THREADS# include <stl_threads.h># define __NODE_ALLOCATOR_THREADS true# ifdef __STL_SGI_THREADS // We test whether threads are in use before locking. // Perhaps this should be moved into stl_threads.h, but that // probably makes it harder to avoid the procedure call when // it isn't needed. extern "C" { extern int __us_rsthread_malloc; } // The above is copied from malloc.h. Including <malloc.h> // would be cleaner but fails with certain levels of standard // conformance.# define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \ { _S_node_allocator_lock._M_acquire_lock(); }# define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \ { _S_node_allocator_lock._M_release_lock(); }# else /* !__STL_SGI_THREADS */# define __NODE_ALLOCATOR_LOCK \ { if (threads) _S_node_allocator_lock._M_acquire_lock(); }# define __NODE_ALLOCATOR_UNLOCK \ { if (threads) _S_node_allocator_lock._M_release_lock(); }# endif#else// Thread-unsafe# define __NODE_ALLOCATOR_LOCK# define __NODE_ALLOCATOR_UNLOCK# define __NODE_ALLOCATOR_THREADS false#endif__STL_BEGIN_NAMESPACE#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)#pragma set woff 1174#endif// Malloc-based allocator. Typically slower than default alloc below.// Typically thread-safe and more storage efficient.#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG# ifdef __DECLARE_GLOBALS_HERE void (* __malloc_alloc_oom_handler)() = 0; // g++ 2.7.2 does not handle static template data members.# else extern void (* __malloc_alloc_oom_handler)();# endif#endiftemplate <int __inst>class __malloc_alloc_template {private: static void* _S_oom_malloc(size_t); static void* _S_oom_realloc(void*, size_t);#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG static void (* __malloc_alloc_oom_handler)();#endifpublic: static void* allocate(size_t __n) { void* __result = malloc(__n); if (0 == __result) __result = _S_oom_malloc(__n); return __result; } static void deallocate(void* __p, size_t /* __n */) { free(__p); } static void* reallocate(void* __p, size_t /* old_sz */, size_t __new_sz) { void* __result = realloc(__p, __new_sz); if (0 == __result) __result = _S_oom_realloc(__p, __new_sz); return __result; } static void (* __set_malloc_handler(void (*__f)()))() { void (* __old)() = __malloc_alloc_oom_handler; __malloc_alloc_oom_handler = __f; return(__old); }};// malloc_alloc out-of-memory handling#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUGtemplate <int __inst>void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0;#endiftemplate <int __inst>void*__malloc_alloc_template<__inst>::_S_oom_malloc(size_t __n){ void (* __my_malloc_handler)(); void* __result; for (;;) { __my_malloc_handler = __malloc_alloc_oom_handler; if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; } (*__my_malloc_handler)(); __result = malloc(__n); if (__result) return(__result); }}template <int __inst>void* __malloc_alloc_template<__inst>::_S_oom_realloc(void* __p, size_t __n){ void (* __my_malloc_handler)(); void* __result; for (;;) { __my_malloc_handler = __malloc_alloc_oom_handler; if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; } (*__my_malloc_handler)(); __result = realloc(__p, __n); if (__result) return(__result); }}typedef __malloc_alloc_template<0> malloc_alloc;template<class _Tp, class _Alloc>class simple_alloc {public: static _Tp* allocate(size_t __n) { return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); } static _Tp* allocate(void) { return (_Tp*) _Alloc::allocate(sizeof (_Tp)); } static void deallocate(_Tp* __p, size_t __n) { if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); } static void deallocate(_Tp* __p) { _Alloc::deallocate(__p, sizeof (_Tp)); }};// Allocator adaptor to check size arguments for debugging.// Reports errors using assert. Checking can be disabled with// NDEBUG, but it's far better to just use the underlying allocator// instead when no checking is desired.// There is some evidence that this can confuse Purify.template <class _Alloc>class debug_alloc {private: enum {_S_extra = 8}; // Size of space used to store size. Note // that this must be large enough to preserve // alignment.public: static void* allocate(size_t __n) { char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra); *(size_t*)__result = __n; return __result + (int) _S_extra; } static void deallocate(void* __p, size_t __n) { char* __real_p = (char*)__p - (int) _S_extra; assert(*(size_t*)__real_p == __n); _Alloc::deallocate(__real_p, __n + (int) _S_extra); } static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz) { char* __real_p = (char*)__p - (int) _S_extra; assert(*(size_t*)__real_p == __old_sz); char* __result = (char*) _Alloc::reallocate(__real_p, __old_sz + (int) _S_extra, __new_sz + (int) _S_extra); *(size_t*)__result = __new_sz; return __result + (int) _S_extra; }};# ifdef __USE_MALLOCtypedef malloc_alloc alloc;typedef malloc_alloc single_client_alloc;# else// Default node allocator.// With a reasonable compiler, this should be roughly as fast as the// original STL class-specific allocators, but with less fragmentation.// Default_alloc_template parameters are experimental and MAY// DISAPPEAR in the future. Clients should just use alloc for now.//// Important implementation properties:// 1. If the client request an object of size > _MAX_BYTES, the resulting// object will be obtained directly from malloc.// 2. In all other cases, we allocate an object of size exactly// _S_round_up(requested_size). Thus the client has enough size// information that we can return the object to the proper free list// without permanently losing part of the object.//// The first template parameter specifies whether more than one thread// may use this allocator. It is safe to allocate an object from// one instance of a default_alloc and deallocate it with another// one. This effectively transfers its ownership to the second one.// This may have undesirable effects on reference locality.// The second parameter is unreferenced and serves only to allow the// creation of multiple default_alloc instances.// Node that containers built on different allocator instances have// different types, limiting the utility of this approach.#if defined(__SUNPRO_CC) || defined(__GNUC__)// breaks if we make these template class members: enum {_ALIGN = 8}; enum {_MAX_BYTES = 128}; enum {_NFREELISTS = 16}; // _MAX_BYTES/_ALIGN#endiftemplate <bool threads, int inst>class __default_alloc_template {private: // Really we should use static const int x = N // instead of enum { x = N }, but few compilers accept the former.#if ! (defined(__SUNPRO_CC) || defined(__GNUC__)) enum {_ALIGN = 8}; enum {_MAX_BYTES = 128}; enum {_NFREELISTS = 16}; // _MAX_BYTES/_ALIGN# endif static size_t _S_round_up(size_t __bytes) { return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); }__PRIVATE: union _Obj { union _Obj* _M_free_list_link; char _M_client_data[1]; /* The client sees this. */ };private:# if defined(__SUNPRO_CC) || defined(__GNUC__) || defined(__HP_aCC) static _Obj* __STL_VOLATILE _S_free_list[]; // Specifying a size results in duplicate def for 4.1# else static _Obj* __STL_VOLATILE _S_free_list[_NFREELISTS]; # endif static size_t _S_freelist_index(size_t __bytes) { return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); } // Returns an object of size __n, and optionally adds to size __n free list. static void* _S_refill(size_t __n); // Allocates a chunk for nobjs of size size. nobjs may be reduced // if it is inconvenient to allocate the requested number. static char* _S_chunk_alloc(size_t __size, int& __nobjs); // Chunk allocation state. static char* _S_start_free; static char* _S_end_free; static size_t _S_heap_size;# ifdef __STL_THREADS static _STL_mutex_lock _S_node_allocator_lock;# endif // It would be nice to use _STL_auto_lock here. But we // don't need the NULL check. And we do need a test whether // threads have actually been started. class _Lock; friend class _Lock; class _Lock { public: _Lock() { __NODE_ALLOCATOR_LOCK; } ~_Lock() { __NODE_ALLOCATOR_UNLOCK; } };public: /* __n must be > 0 */ static void* allocate(size_t __n) { void* __ret = 0; if (__n > (size_t) _MAX_BYTES) { __ret = malloc_alloc::allocate(__n); } else { _Obj* __STL_VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__n); // Acquire the lock here with a constructor call. // This ensures that it is released in exit or during stack // unwinding.# ifndef _NOTHREADS /*REFERENCED*/ _Lock __lock_instance;# endif _Obj* __RESTRICT __result = *__my_free_list; if (__result == 0) __ret = _S_refill(_S_round_up(__n)); else { *__my_free_list = __result -> _M_free_list_link; __ret = __result; } } return __ret; }; /* __p may not be 0 */ static void deallocate(void* __p, size_t __n) { if (__n > (size_t) _MAX_BYTES) malloc_alloc::deallocate(__p, __n); else { _Obj* __STL_VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__n); _Obj* __q = (_Obj*)__p; // acquire lock# ifndef _NOTHREADS /*REFERENCED*/ _Lock __lock_instance;# endif /* _NOTHREADS */ __q -> _M_free_list_link = *__my_free_list; *__my_free_list = __q; // lock is released here } } static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz);} ;typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;typedef __default_alloc_template<false, 0> single_client_alloc;template <bool __threads, int __inst>inline bool operator==(const __default_alloc_template<__threads, __inst>&, const __default_alloc_template<__threads, __inst>&){ return true;}# ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDERtemplate <bool __threads, int __inst>inline bool operator!=(const __default_alloc_template<__threads, __inst>&, const __default_alloc_template<__threads, __inst>&){ return false;}# endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER *//* We allocate memory in large chunks in order to avoid fragmenting *//* the malloc heap too much. *//* We assume that size is properly aligned. *//* We hold the allocation lock. */template <bool __threads, int __inst>char*__default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size, int& __nobjs){ char* __result; size_t __total_bytes = __size * __nobjs; size_t __bytes_left = _S_end_free - _S_start_free; if (__bytes_left >= __total_bytes) { __result = _S_start_free; _S_start_free += __total_bytes; return(__result); } else if (__bytes_left >= __size) { __nobjs = (int)(__bytes_left/__size); __total_bytes = __size * __nobjs; __result = _S_start_free; _S_start_free += __total_bytes; return(__result);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -