⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stl_deque.h

📁 eVC stl 方便大家在evc中使用stl 帮助程序员更方便的编程。
💻 H
📖 第 1 页 / 共 4 页
字号:
/* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation.  Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose.  It is provided "as is" without express or implied warranty. * * * Copyright (c) 1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation.  Silicon Graphics makes no * representations about the suitability of this software for any * purpose.  It is provided "as is" without express or implied warranty. *//* NOTE: This is an internal header file, included by other STL headers. *   You should not attempt to use it directly. */#include <concept_checks.h>#ifndef __SGI_STL_INTERNAL_DEQUE_H#define __SGI_STL_INTERNAL_DEQUE_H/* Class invariants: *  For any nonsingular iterator i: *    i.node is the address of an element in the map array.  The *      contents of i.node is a pointer to the beginning of a node. *    i.first == *(i.node)  *    i.last  == i.first + node_size *    i.cur is a pointer in the range [i.first, i.last).  NOTE: *      the implication of this is that i.cur is always a dereferenceable *      pointer, even if i is a past-the-end iterator. *  Start and Finish are always nonsingular iterators.  NOTE: this means *    that an empty deque must have one node, and that a deque *    with N elements, where N is the buffer size, must have two nodes. *  For every node other than start.node and finish.node, every element *    in the node is an initialized object.  If start.node == finish.node, *    then [start.cur, finish.cur) are initialized objects, and *    the elements outside that range are uninitialized storage.  Otherwise, *    [start.cur, start.last) and [finish.first, finish.cur) are initialized *    objects, and [start.first, start.cur) and [finish.cur, finish.last) *    are uninitialized storage. *  [map, map + map_size) is a valid, non-empty range.   *  [start.node, finish.node] is a valid range contained within  *    [map, map + map_size).   *  A pointer in the range [map, map + map_size) points to an allocated node *    if and only if the pointer is in the range [start.node, finish.node]. *//* * In previous versions of deque, there was an extra template  * parameter so users could control the node size.  This extension * turns out to violate the C++ standard (it can be detected using * template template parameters), and it has been removed. */__STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)#pragma set woff 1174#pragma set woff 1375#endif// Note: this function is simply a kludge to work around several compilers'//  bugs in handling constant expressions.inline size_t __deque_buf_size(size_t __size) {  return __size < 512 ? size_t(512 / __size) : size_t(1);}template <class _Tp, class _Ref, class _Ptr>struct _Deque_iterator {  typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;  typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;  static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }  typedef random_access_iterator_tag iterator_category;  typedef _Tp value_type;  typedef _Ptr pointer;  typedef _Ref reference;  typedef size_t size_type;  typedef ptrdiff_t difference_type;  typedef _Tp** _Map_pointer;  typedef _Deque_iterator _Self;  _Tp* _M_cur;  _Tp* _M_first;  _Tp* _M_last;  _Map_pointer _M_node;  _Deque_iterator(_Tp* __x, _Map_pointer __y)     : _M_cur(__x), _M_first(*__y),      _M_last(*__y + _S_buffer_size()), _M_node(__y) {}  _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}  _Deque_iterator(const iterator& __x)    : _M_cur(__x._M_cur), _M_first(__x._M_first),       _M_last(__x._M_last), _M_node(__x._M_node) {}  reference operator*() const { return *_M_cur; }#ifndef __SGI_STL_NO_ARROW_OPERATOR  pointer operator->() const { return _M_cur; }#endif /* __SGI_STL_NO_ARROW_OPERATOR */  difference_type operator-(const _Self& __x) const {    return difference_type(_S_buffer_size()) * (_M_node - __x._M_node - 1) +      (_M_cur - _M_first) + (__x._M_last - __x._M_cur);  }  _Self& operator++() {    ++_M_cur;    if (_M_cur == _M_last) {      _M_set_node(_M_node + 1);      _M_cur = _M_first;    }    return *this;   }  _Self operator++(int)  {    _Self __tmp = *this;    ++*this;    return __tmp;  }  _Self& operator--() {    if (_M_cur == _M_first) {      _M_set_node(_M_node - 1);      _M_cur = _M_last;    }    --_M_cur;    return *this;  }  _Self operator--(int) {    _Self __tmp = *this;    --*this;    return __tmp;  }  _Self& operator+=(difference_type __n)  {    difference_type __offset = __n + (_M_cur - _M_first);    if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))      _M_cur += __n;    else {      difference_type __node_offset =        __offset > 0 ? __offset / difference_type(_S_buffer_size())                   : -difference_type((-__offset - 1) / _S_buffer_size()) - 1;      _M_set_node(_M_node + __node_offset);      _M_cur = _M_first +         (__offset - __node_offset * difference_type(_S_buffer_size()));    }    return *this;  }  _Self operator+(difference_type __n) const  {    _Self __tmp = *this;    return __tmp += __n;  }  _Self& operator-=(difference_type __n) { return *this += -__n; }   _Self operator-(difference_type __n) const {    _Self __tmp = *this;    return __tmp -= __n;  }  reference operator[](difference_type __n) const { return *(*this + __n); }  bool operator==(const _Self& __x) const { return _M_cur == __x._M_cur; }  bool operator!=(const _Self& __x) const { return !(*this == __x); }  bool operator<(const _Self& __x) const {    return (_M_node == __x._M_node) ?       (_M_cur < __x._M_cur) : (_M_node < __x._M_node);  }  bool operator>(const _Self& __x) const  { return __x < *this; }  bool operator<=(const _Self& __x) const { return !(__x < *this); }  bool operator>=(const _Self& __x) const { return !(*this < __x); }  void _M_set_node(_Map_pointer __new_node) {    _M_node = __new_node;    _M_first = *__new_node;    _M_last = _M_first + difference_type(_S_buffer_size());  }};template <class _Tp, class _Ref, class _Ptr>inline _Deque_iterator<_Tp, _Ref, _Ptr>operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x){  return __x + __n;}#ifndef __STL_CLASS_PARTIAL_SPECIALIZATIONtemplate <class _Tp, class _Ref, class _Ptr>inline random_access_iterator_tagiterator_category(const _Deque_iterator<_Tp,_Ref,_Ptr>&){  return random_access_iterator_tag();}template <class _Tp, class _Ref, class _Ptr>inline _Tp* value_type(const _Deque_iterator<_Tp,_Ref,_Ptr>&) { return 0; }template <class _Tp, class _Ref, class _Ptr>inline ptrdiff_t* distance_type(const _Deque_iterator<_Tp,_Ref,_Ptr>&) {  return 0;}#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */// Deque base class.  It has two purposes.  First, its constructor//  and destructor allocate (but don't initialize) storage.  This makes//  exception safety easier.  Second, the base class encapsulates all of//  the differences between SGI-style allocators and standard-conforming//  allocators.#ifdef __STL_USE_STD_ALLOCATORS// Base class for ordinary allocators.template <class _Tp, class _Alloc, bool __is_static>class _Deque_alloc_base {public:  typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;  allocator_type get_allocator() const { return _M_node_allocator; }  _Deque_alloc_base(const allocator_type& __a)    : _M_node_allocator(__a), _M_map_allocator(__a),      _M_map(0), _M_map_size(0)  {}  protected:  typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type          _Map_allocator_type;  allocator_type      _M_node_allocator;  _Map_allocator_type _M_map_allocator;  _Tp* _M_allocate_node() {    return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));  }  void _M_deallocate_node(_Tp* __p) {    _M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));  }  _Tp** _M_allocate_map(size_t __n)     { return _M_map_allocator.allocate(__n); }  void _M_deallocate_map(_Tp** __p, size_t __n)     { _M_map_allocator.deallocate(__p, __n); }  _Tp** _M_map;  size_t _M_map_size;};// Specialization for instanceless allocators.template <class _Tp, class _Alloc>class _Deque_alloc_base<_Tp, _Alloc, true>{public:  typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;  allocator_type get_allocator() const { return allocator_type(); }  _Deque_alloc_base(const allocator_type&) : _M_map(0), _M_map_size(0) {}  protected:  typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Node_alloc_type;  typedef typename _Alloc_traits<_Tp*, _Alloc>::_Alloc_type _Map_alloc_type;  _Tp* _M_allocate_node() {    return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));  }  void _M_deallocate_node(_Tp* __p) {    _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));  }  _Tp** _M_allocate_map(size_t __n)     { return _Map_alloc_type::allocate(__n); }  void _M_deallocate_map(_Tp** __p, size_t __n)     { _Map_alloc_type::deallocate(__p, __n); }  _Tp** _M_map;  size_t _M_map_size;};template <class _Tp, class _Alloc>class _Deque_base  : public _Deque_alloc_base<_Tp,_Alloc,                              _Alloc_traits<_Tp, _Alloc>::_S_instanceless>{public:  typedef _Deque_alloc_base<_Tp,_Alloc,                             _Alloc_traits<_Tp, _Alloc>::_S_instanceless>          _Base;  typedef typename _Base::allocator_type allocator_type;  typedef _Deque_iterator<_Tp,_Tp&,_Tp*>             iterator;  typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;  _Deque_base(const allocator_type& __a, size_t __num_elements)    : _Base(__a), _M_start(), _M_finish()    { _M_initialize_map(__num_elements); }  _Deque_base(const allocator_type& __a)     : _Base(__a), _M_start(), _M_finish() {}  ~_Deque_base();    protected:  void _M_initialize_map(size_t);  void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);  void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);  enum { _S_initial_map_size = 8 };protected:  iterator _M_start;  iterator _M_finish;};#else /* __STL_USE_STD_ALLOCATORS */template <class _Tp, class _Alloc>class _Deque_base {public:  typedef _Deque_iterator<_Tp,_Tp&,_Tp*>             iterator;  typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;  typedef _Alloc allocator_type;  allocator_type get_allocator() const { return allocator_type(); }  _Deque_base(const allocator_type&, size_t __num_elements)    : _M_map(0), _M_map_size(0),  _M_start(), _M_finish() {    _M_initialize_map(__num_elements);  }  _Deque_base(const allocator_type&)    : _M_map(0), _M_map_size(0),  _M_start(), _M_finish() {}  ~_Deque_base();    protected:  void _M_initialize_map(size_t);  void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);  void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);  enum { _S_initial_map_size = 8 };protected:  _Tp** _M_map;  size_t _M_map_size;    iterator _M_start;  iterator _M_finish;  typedef simple_alloc<_Tp, _Alloc>  _Node_alloc_type;  typedef simple_alloc<_Tp*, _Alloc> _Map_alloc_type;  _Tp* _M_allocate_node()    { return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp))); }  void _M_deallocate_node(_Tp* __p)    { _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp))); }  _Tp** _M_allocate_map(size_t __n)     { return _Map_alloc_type::allocate(__n); }  void _M_deallocate_map(_Tp** __p, size_t __n)     { _Map_alloc_type::deallocate(__p, __n); }};#endif /* __STL_USE_STD_ALLOCATORS */// Non-inline member functions from _Deque_base.template <class _Tp, class _Alloc>_Deque_base<_Tp,_Alloc>::~_Deque_base() {  if (_M_map) {    _M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);    _M_deallocate_map(_M_map, _M_map_size);  }}template <class _Tp, class _Alloc>void_Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements){  size_t __num_nodes =     __num_elements / __deque_buf_size(sizeof(_Tp)) + 1;  _M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);  _M_map = _M_allocate_map(_M_map_size);  _Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;  _Tp** __nfinish = __nstart + __num_nodes;      __STL_TRY {    _M_create_nodes(__nstart, __nfinish);  }  __STL_UNWIND((_M_deallocate_map(_M_map, _M_map_size),                 _M_map = 0, _M_map_size = 0));  _M_start._M_set_node(__nstart);  _M_finish._M_set_node(__nfinish - 1);  _M_start._M_cur = _M_start._M_first;  _M_finish._M_cur = _M_finish._M_first +               __num_elements % __deque_buf_size(sizeof(_Tp));}template <class _Tp, class _Alloc>void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish){  _Tp** __cur;  __STL_TRY {    for (__cur = __nstart; __cur < __nfinish; ++__cur)      *__cur = _M_allocate_node();  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -