⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spsolve.c

📁 linux平台下类似著名的电路板作图软件 Spice的源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
                pElement = pElement->NextInCol;            }        }    }/* Backward Substitution. Solves Ux = c.*/    for (I = Size; I > 0; I--)    {   Temp = Intermediate[I];        pElement = Matrix->Diag[I]->NextInRow;        while (pElement != NULL)        {/* Cmplx expr: Temp -= *Element * Intermediate[Element->Col]. */            CMPLX_MULT_SUBT_ASSIGN(Temp, *pElement,Intermediate[pElement->Col]);            pElement = pElement->NextInRow;        }        Intermediate[I] = Temp;    }/* Unscramble Intermediate vector while placing data in to Solution vector. */    pExtOrder = &Matrix->IntToExtColMap[Size];#if spSEPARATED_COMPLEX_VECTORS    for (I = Size; I > 0; I--)    {   Solution[*(pExtOrder)] = Intermediate[I].Real;        iSolution[*(pExtOrder--)] = Intermediate[I].Imag;    }#else    ExtVector = (ComplexVector)Solution;    for (I = Size; I > 0; I--)        ExtVector[*(pExtOrder--)] = Intermediate[I];#endif    return;}#endif /* spCOMPLEX */#if TRANSPOSE/* *  SOLVE TRANSPOSED MATRIX EQUATION * *  Performs forward elimination and back substitution to find the *  unknown vector from the RHS vector and transposed factored *  matrix. This routine is useful when performing sensitivity analysis *  on a circuit using the adjoint method.  This routine assumes that *  the pivots are associated with the untransposed lower triangular *  (L) matrix and that the diagonal of the untransposed upper *  triangular (U) matrix consists of ones. * *  >>> Arguments: *  Matrix  <input>  (char *) *      Pointer to matrix. *  RHS  <input>  (RealVector) *      RHS is the input data array, the right hand side. This data is *      undisturbed and may be reused for other solves. *  Solution  <output>  (RealVector) *      Solution is the output data array. This routine is constructed such that *      RHS and Solution can be the same array. *  iRHS  <input>  (RealVector) *      iRHS is the imaginary portion of the input data array, the right *      hand side. This data is undisturbed and may be reused for other solves. *      If spSEPARATED_COMPLEX_VECTOR is set false, or if matrix is real, there *      is no need to supply this array. *  iSolution  <output>  (RealVector) *      iSolution is the imaginary portion of the output data array. This *      routine is constructed such that iRHS and iSolution can be *      the same array.  If spSEPARATED_COMPLEX_VECTOR is set false, or if *      matrix is real, there is no need to supply this array. * *  >>> Local variables: *  Intermediate  (RealVector) *      Temporary storage for use in forward elimination and backward *      substitution.  Commonly referred to as c, when the LU factorization *      equations are given as  Ax = b, Lc = b, Ux = c.  Local version of *      Matrix->Intermediate, which was created during the initial *      factorization in function spcCreateInternalVectors() in the matrix *      factorization module. *  pElement  (ElementPtr) *      Pointer used to address elements in both the lower and upper triangle *      matrices. *  pExtOrder  (int *) *      Pointer used to sequentially access each entry in IntToExtRowMap *      and IntToExtRowMap arrays.  Used to quickly scramble and unscramble *      RHS and Solution to account for row and column interchanges. *  pPivot  (ElementPtr) *      Pointer that points to current pivot or diagonal element. *  Size  (int) *      Size of matrix. Made local to reduce indirection. *  Temp  (RealNumber) *      Temporary storage for entries in arrays. * *  >>> Obscure Macros *  IMAG_VECTORS *      Replaces itself with `, iRHS, iSolution' if the options spCOMPLEX and *      spSEPARATED_COMPLEX_VECTORS are set, otherwise it disappears *      without a trace. *//*VARARGS3*/voidspSolveTransposed( eMatrix, RHS, Solution IMAG_VECTORS )char *eMatrix;RealVector  RHS, Solution IMAG_VECTORS;{MatrixPtr  Matrix = (MatrixPtr)eMatrix;register  ElementPtr  pElement;register  RealVector  Intermediate;register  int  I, *pExtOrder, Size;ElementPtr  pPivot;RealNumber  Temp;void SolveComplexTransposedMatrix();/* Begin `spSolveTransposed'. */    ASSERT( IS_VALID(Matrix) AND IS_FACTORED(Matrix) );#if spCOMPLEX    if (Matrix->Complex)    {   SolveComplexTransposedMatrix( Matrix, RHS, Solution IMAG_VECTORS );        return;    }#endif#if REAL    Size = Matrix->Size;    Intermediate = Matrix->Intermediate;/* Correct array pointers for ARRAY_OFFSET. */#if NOT ARRAY_OFFSET    --RHS;    --Solution;#endif/* Initialize Intermediate vector. */    pExtOrder = &Matrix->IntToExtColMap[Size];    for (I = Size; I > 0; I--)        Intermediate[I] = RHS[*(pExtOrder--)];/* Forward elimination. */    for (I = 1; I <= Size; I++)    {   /* This step of the elimination is skipped if Temp equals zero. */        if ((Temp = Intermediate[I]) != 0.0)        {   pElement = Matrix->Diag[I]->NextInRow;            while (pElement != NULL)            {   Intermediate[pElement->Col] -= Temp * pElement->Real;                pElement = pElement->NextInRow;            }        }    }/* Backward Substitution. */    for (I = Size; I > 0; I--)    {   pPivot = Matrix->Diag[I];        Temp = Intermediate[I];        pElement = pPivot->NextInCol;        while (pElement != NULL)        {   Temp -= pElement->Real * Intermediate[pElement->Row];            pElement = pElement->NextInCol;        }        Intermediate[I] = Temp * pPivot->Real;    }/* Unscramble Intermediate vector while placing data in to Solution vector. */    pExtOrder = &Matrix->IntToExtRowMap[Size];    for (I = Size; I > 0; I--)        Solution[*(pExtOrder--)] = Intermediate[I];    return;#endif /* REAL */}#endif /* TRANSPOSE */#if TRANSPOSE AND spCOMPLEX/* *  SOLVE COMPLEX TRANSPOSED MATRIX EQUATION * *  Performs forward elimination and back substitution to find the *  unknown vector from the RHS vector and transposed factored *  matrix. This routine is useful when performing sensitivity analysis *  on a circuit using the adjoint method.  This routine assumes that *  the pivots are associated with the untransposed lower triangular *  (L) matrix and that the diagonal of the untransposed upper *  triangular (U) matrix consists of ones. * *  >>> Arguments: *  Matrix  <input>  (char *) *      Pointer to matrix. *  RHS  <input>  (RealVector) *      RHS is the input data array, the right hand *      side. This data is undisturbed and may be reused for other solves. *      This vector is only the real portion if the matrix is complex and *      spSEPARATED_COMPLEX_VECTORS is set true. *  Solution  <output>  (RealVector) *      Solution is the real portion of the output data array. This routine *      is constructed such that RHS and Solution can be the same array. *      This vector is only the real portion if the matrix is complex and *      spSEPARATED_COMPLEX_VECTORS is set true. *  iRHS  <input>  (RealVector) *      iRHS is the imaginary portion of the input data array, the right *      hand side. This data is undisturbed and may be reused for other solves. *      If either spCOMPLEX or spSEPARATED_COMPLEX_VECTOR is set false, there *      is no need to supply this array. *  iSolution  <output>  (RealVector) *      iSolution is the imaginary portion of the output data array. This *      routine is constructed such that iRHS and iSolution can be *      the same array.  If spCOMPLEX or spSEPARATED_COMPLEX_VECTOR is set *      false, there is no need to supply this array. * *  >>> Local variables: *  Intermediate  (ComplexVector) *      Temporary storage for use in forward elimination and backward *      substitution.  Commonly referred to as c, when the LU factorization *      equations are given as  Ax = b, Lc = b, Ux = c.  Local version of *      Matrix->Intermediate, which was created during *      the initial factorization in function spcCreateInternalVectors() in the *      matrix factorization module. *  pElement  (ElementPtr) *      Pointer used to address elements in both the lower and upper triangle *      matrices. *  pExtOrder  (int *) *      Pointer used to sequentially access each entry in IntToExtRowMap *      and IntToExtColMap arrays.  Used to quickly scramble and unscramble *      RHS and Solution to account for row and column interchanges. *  pPivot  (ElementPtr) *      Pointer that points to current pivot or diagonal element. *  Size  (int) *      Size of matrix. Made local to reduce indirection. *  Temp  (ComplexNumber) *      Temporary storage for entries in arrays. * *  >>> Obscure Macros *  IMAG_VECTORS *      Replaces itself with `, iRHS, iSolution' if the options spCOMPLEX and *      spSEPARATED_COMPLEX_VECTORS are set, otherwise it disappears *      without a trace. */static voidSolveComplexTransposedMatrix(Matrix, RHS, Solution IMAG_VECTORS )MatrixPtr  Matrix;RealVector  RHS, Solution IMAG_VECTORS;{register  ElementPtr  pElement;register  ComplexVector  Intermediate;register  int  I, *pExtOrder, Size;register  ComplexVector  ExtVector;ElementPtr  pPivot;ComplexNumber  Temp;/* Begin `SolveComplexTransposedMatrix'. */    Size = Matrix->Size;    Intermediate = (ComplexVector)Matrix->Intermediate;/* Correct array pointers for ARRAY_OFFSET. */#if NOT ARRAY_OFFSET#if spSEPARATED_COMPLEX_VECTORS    --RHS;      --iRHS;    --Solution; --iSolution;#else    RHS -= 2;   Solution -= 2;#endif#endif/* Initialize Intermediate vector. */    pExtOrder = &Matrix->IntToExtColMap[Size];#if spSEPARATED_COMPLEX_VECTORS    for (I = Size; I > 0; I--)    {   Intermediate[I].Real = RHS[*(pExtOrder)];        Intermediate[I].Imag = iRHS[*(pExtOrder--)];    }#else    ExtVector = (ComplexVector)RHS;    for (I = Size; I > 0; I--)        Intermediate[I] = ExtVector[*(pExtOrder--)];#endif/* Forward elimination. */    for (I = 1; I <= Size; I++)    {   Temp = Intermediate[I];/* This step of the elimination is skipped if Temp equals zero. */        if ((Temp.Real != 0.0) OR (Temp.Imag != 0.0))        {   pElement = Matrix->Diag[I]->NextInRow;            while (pElement != NULL)            {/* Cmplx expr: Intermediate[Element->Col] -= Temp * *Element. */                CMPLX_MULT_SUBT_ASSIGN( Intermediate[pElement->Col],                                        Temp, *pElement);                pElement = pElement->NextInRow;            }        }    }/* Backward Substitution. */    for (I = Size; I > 0; I--)    {   pPivot = Matrix->Diag[I];        Temp = Intermediate[I];        pElement = pPivot->NextInCol;        while (pElement != NULL)        {/* Cmplx expr: Temp -= Intermediate[Element->Row] * *Element. */            CMPLX_MULT_SUBT_ASSIGN(Temp,Intermediate[pElement->Row],*pElement);            pElement = pElement->NextInCol;        }/* Cmplx expr: Intermediate = Temp * (1.0 / *pPivot). */        CMPLX_MULT(Intermediate[I], Temp, *pPivot);    }/* Unscramble Intermediate vector while placing data in to Solution vector. */    pExtOrder = &Matrix->IntToExtRowMap[Size];#if spSEPARATED_COMPLEX_VECTORS    for (I = Size; I > 0; I--)    {   Solution[*(pExtOrder)] = Intermediate[I].Real;        iSolution[*(pExtOrder--)] = Intermediate[I].Imag;    }#else    ExtVector = (ComplexVector)Solution;    for (I = Size; I > 0; I--)        ExtVector[*(pExtOrder--)] = Intermediate[I];#endif    return;}#endif /* TRANSPOSE AND spCOMPLEX */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -