⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 maximumentropysentencedetector.cs

📁 英语句子自然语言处理统计分析例子 Statistical parsing of English sentences Shows how to generate parse trees for
💻 CS
字号:
//Copyright (C) 2005 Richard J. Northedge
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

//This file is based on the SentenceDetectorME.java source file found in the
//original java implementation of OpenNLP.  That source file contains the following header:

// Copyright (C) 2004 Jason Baldridge, Gann Bierner and Tom Morton
// 
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

using System;
using System.Collections;

namespace OpenNLP.Tools.SentenceDetect
{
	/// <summary>
	/// A sentence detector for splitting up raw text into sentences.  A maximum
	/// entropy model is used to evaluate the characters ".", "!", and "?" in a
	/// string to determine if they signify the end of a sentence.
	/// </summary>
	public class MaximumEntropySentenceDetector : ISentenceDetector
	{
		/// <summary>
		/// The maximum entropy model to use to evaluate contexts.
		/// </summary>
		private SharpEntropy.IMaximumEntropyModel mModel;
		
		/// <summary>
		/// The feature context generator.
		/// </summary>
		private SharpEntropy.IContextGenerator mContextGenerator;
		
		/// <summary>
		/// The EndOfSentenceScanner to use when scanning for end of
		/// sentence offsets.
		/// </summary>
		private IEndOfSentenceScanner mScanner;
				
		/// <summary>
		/// The list of probabilities associated with each decision
		/// </summary>
		private ArrayList mSentenceProbs;
		
		/// <summary>
		/// Constructor which takes a IMaximumEntropyModel and calls the three-arg
		/// constructor with that model, a SentenceDetectionContextGenerator, and the
		/// default end of sentence scanner.
		/// </summary>
		/// <param name="model">
		/// The MaxentModel which this SentenceDetectorME will use to
		/// evaluate end-of-sentence decisions.
		/// </param>
		public MaximumEntropySentenceDetector(SharpEntropy.IMaximumEntropyModel model) : this(model, new SentenceDetectionContextGenerator(DefaultEndOfSentenceScanner.GetEndOfSentenceCharacters()), new DefaultEndOfSentenceScanner())
		{
			mSentenceProbs = new ArrayList(50);
		}
		
		/// <summary>
		/// Constructor which takes a IMaximumEntropyModel and a IContextGenerator.
		/// calls the three-arg constructor with a default ed of sentence scanner.
		/// </summary>
		/// <param name="model">
		/// The MaxentModel which this SentenceDetectorME will use to
		/// evaluate end-of-sentence decisions.
		/// </param>
		/// <param name="contextGenerator">
		/// The IContextGenerator object which this MaximumEntropySentenceDetector
		/// will use to turn strings into contexts for the model to
		/// evaluate.
		/// </param>
		public MaximumEntropySentenceDetector(SharpEntropy.IMaximumEntropyModel model, SharpEntropy.IContextGenerator contextGenerator) : this(model, contextGenerator, new DefaultEndOfSentenceScanner())
		{
		}
		
		/// <summary> 
		/// Creates a new <code>MaximumEntropySentenceDetector</code> instance.
		/// </summary>
		/// <param name="model">
		/// The IMaximumEntropyModel which this MaximumEntropySentenceDetector will use to
		/// evaluate end-of-sentence decisions.
		/// </param>
		/// <param name="contextGenerator">The IContextGenerator object which this MaximumEntropySentenceDetector
		/// will use to turn strings into contexts for the model to
		/// evaluate.
		/// </param>
		/// <param name="scanner">the EndOfSentenceScanner which this MaximumEntropySentenceDetector
		/// will use to locate end of sentence indexes.
		/// </param>
		public MaximumEntropySentenceDetector(SharpEntropy.IMaximumEntropyModel model, SharpEntropy.IContextGenerator contextGenerator, IEndOfSentenceScanner scanner)
		{
			mModel = model;
			mContextGenerator = contextGenerator;
			mScanner = scanner;
		}
		
		/// <summary>
		/// Returns the probabilities associated with the most recent
		/// calls to SentenceDetect().
		/// </summary>
		/// <returns>
		/// probability for each sentence returned for the most recent
		/// call to SentenceDetect.  If not applicable an empty array is
		/// returned.
		/// </returns>
		public virtual double[] GetSentenceProbabilities()
		{
			double[] sentenceProbArray = new double[mSentenceProbs.Count];
			for (int currentSentenceProb = 0; currentSentenceProb < sentenceProbArray.Length; currentSentenceProb++)
			{
				sentenceProbArray[currentSentenceProb] = ((double) mSentenceProbs[currentSentenceProb]);
			}
			return sentenceProbArray;	
		}

		/// <summary> 
		/// Detect sentences in a string.
		/// </summary>
		/// <param name="input">
		/// The string to be processed.
		/// </param>
		/// <returns>   
		/// A string array containing individual sentences as elements.
		/// </returns>
		public virtual string[] SentenceDetect(string input)
		{
			int[] startsList = SentencePositionDetect(input);
			if (startsList.Length == 0) 
			{
				return new String[] {input};
			}
			
			bool isLeftover = startsList[startsList.Length - 1] != input.Length;
			string[] sentences = new string[isLeftover ? startsList.Length + 1 : startsList.Length];

			sentences[0] = input.Substring(0, (startsList[0]) - (0));
			for (int currentStart = 1; currentStart < startsList.Length; currentStart++)
			{
				sentences[currentStart] = input.Substring(startsList[currentStart - 1], (startsList[currentStart]) - (startsList[currentStart - 1]));
			}
			
			if (isLeftover) 
			{
				sentences[sentences.Length - 1] = input.Substring(startsList[startsList.Length - 1]);
			}

			return (sentences);
		}
		
		private int GetFirstWhitespace(string input, int position) 
		{
			while (position < input.Length && !System.Char.IsWhiteSpace(input[position]))
			{
				position++;
			}
			return position;
		}

		private int GetFirstNonWhitespace(string input, int position)
		{
			while (position < input.Length && System.Char.IsWhiteSpace(input[position]))
			{
				position++;
			}
			return position;
		}
		
		/// <summary> 
		/// Detect the position of the first words of sentences in a string.
		/// </summary>
		/// <param name="input">
		/// The string to be processed.
		/// </param>
		/// <returns>
		/// A integer array containing the positions of the end index of
		/// every sentence
		/// </returns>
		public virtual int[] SentencePositionDetect(string input)
		{
			double sentenceProbability = 1;
			mSentenceProbs.Clear();
			System.Text.StringBuilder buffer = new System.Text.StringBuilder(input);
			ArrayList endersList = mScanner.GetPositions(input);
			ArrayList positions = new System.Collections.ArrayList(endersList.Count);
			
			for (int currentEnder = 0, enderCount = endersList.Count, index = 0; currentEnder < enderCount; currentEnder++)
			{
				int candidate = (int) endersList[currentEnder];
				int cInt = candidate;
								
				// skip over the leading parts of non-token final delimiters
				int firstWhiteSpace = GetFirstWhitespace(input, cInt + 1);
				if (((currentEnder + 1) < enderCount) && (((int)endersList[currentEnder + 1]) < firstWhiteSpace)) 
				{
					continue;
				}

				Util.Pair pair = new Util.Pair(buffer, candidate);
				double[] probabilities = mModel.Evaluate(mContextGenerator.GetContext(pair));
				string bestOutcome = mModel.GetBestOutcome(probabilities);
				sentenceProbability *= probabilities[mModel.GetOutcomeIndex(bestOutcome)];
				if (bestOutcome.Equals("T") && IsAcceptableBreak(input, index, cInt))
				{
					if (index != cInt)
					{
						positions.Add(GetFirstNonWhitespace(input, GetFirstWhitespace(input, cInt + 1)));//moIntegerPool.GetInteger(GetFirstNonWhitespace(input, GetFirstWhitespace(input, cInt + 1))));
						mSentenceProbs.Add(probabilities[mModel.GetOutcomeIndex(bestOutcome)]);
					}
					index = cInt + 1;
				}
			}
			
			int[] sentencePositions = new int[positions.Count];
			for (int currentPosition = 0; currentPosition < sentencePositions.Length; currentPosition++)
			{
				sentencePositions[currentPosition] = ((int) positions[currentPosition]);
			}
			return sentencePositions;
		}
		
		/// <summary>
		/// Allows subclasses to check an overzealous (read: poorly
		/// trained) model from flagging obvious non-breaks as breaks based
		/// on some boolean determination of a break's acceptability.
		/// 
		/// <p>The implementation here always returns true, which means
		/// that the IMaximumEntropyModel's outcome is taken as is.</p>
		/// </summary>
		/// <param name="input">
		/// the string in which the break occured. 
		/// </param>
		/// <param name="fromIndex">
		/// the start of the segment currently being evaluated 
		/// </param>
		/// <param name="candidateIndex">
		/// the index of the candidate sentence ending 
		/// </param>
		/// <returns> true if the break is acceptable 
		/// </returns>
		protected internal virtual bool IsAcceptableBreak(string input, int fromIndex, int candidateIndex)
		{
			return true;
		}
		
		public static SharpEntropy.GisModel TrainModel(SharpEntropy.ITrainingEventReader eventReader, int iterations, int cut)
		{
			SharpEntropy.GisTrainer trainer = new SharpEntropy.GisTrainer();
			trainer.TrainModel(eventReader, iterations, cut);
			return new SharpEntropy.GisModel(trainer);
		}
		
		/// <summary> Use this training method if you wish to supply an end of
		/// sentence scanner which provides a different set of ending chars
		/// other than the default ones.  They are "\\.|!|\\?|\\\"|\\)".
		/// </summary>
		public static SharpEntropy.GisModel TrainModel(string inFile, int iterations, int cut, IEndOfSentenceScanner scanner)
		{
			SharpEntropy.ITrainingEventReader eventReader;
			SharpEntropy.ITrainingDataReader dataReader;
			System.IO.StreamReader streamReader;
			
			using (streamReader = new System.IO.StreamReader(inFile, System.Text.Encoding.UTF7)) 
			{
				dataReader = new SharpEntropy.PlainTextByLineDataReader(streamReader);
				eventReader = new SentenceDetectionEventReader(dataReader, scanner);

				SharpEntropy.GisTrainer trainer = new SharpEntropy.GisTrainer();
				trainer.TrainModel(eventReader, iterations, cut);
				return new SharpEntropy.GisModel(trainer);
			}
		}
		
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -