📄 bess.m
字号:
function jj = bess(m_max,x)
% Bessel function
% Inputs
% m_max = Largest desired order
% x = Value at which Bessel function J(x) is evaluated
% Output
% jj = Vector of J(x) for all orders <= m_max
%* Perform downward recursion from initial guess
m_top = max(m_max,x)+15; % Top value of m for recursion
m_top = 2*ceil( m_top/2 ); % Round up to an even number
j(m_top+1) = 0;
j(m_top) = 1;
for m=m_top-2:-1:0 % Downward recursion
j(m+1) = 2*(m+1)/(x+eps)*j(m+2) - j(m+3);
end
%* Normalize using identity and return requested values
norm = j(1); % NOTE: Be careful, m=0,1,... but
for m=2:2:m_top % vector goes j(1),j(2),...
norm = norm + 2*j(m+1);
end
for m=0:m_max % Send back only the values for
jj(m+1) = j(m+1)/norm; % m=0,...,m_max and discard values
end % for m=m_max+1,...,m_top
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -