📄 zeroj.m
字号:
function z = zeroj(m_order,n_zero)
% Zeros of the Bessel function J(x)
% Inputs
% m_order = Order of the Bessel function
% n_zero = Index of the zero (first, second, etc.)
% Output
% z = The "n_zero th" zero of the Bessel function
%* Use asymtotic formula for initial guess
beta = (n_zero + 0.5*m_order - 0.25)*pi;
mu = 4*m_order^2;
z = beta - (mu-1)/(8*beta) - 4*(mu-1)*(7*mu-31)/(3*(8*beta)^3);
%* Use Newton's method to locate the root
for i=1:5
jj = bess(m_order+1,z);
% Use the recursion relation to evaluate derivative
deriv = -jj(m_order+2) + m_order/z * jj(m_order+1);
z = z - jj(m_order+1)/deriv; % Newton's root finding
end
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -