⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 relax.m

📁 matlab的数学物理方程数值算法源程序。这是"Numerical Methods for Physics"第二版的matlab源程序。
💻 M
字号:
% relax - Program to solve the Laplace equation using 
% Jacobi, Gauss-Seidel and SOR methods on a square grid
clear all; help relax;  % Clear memory and print header

%* Initialize parameters (system size, grid spacing, etc.)
method = menu('Numerical Method','Jacobi','Gauss-Seidel','SOR');
N = input('Enter number of grid points on a side: ');
L = 1;          % System size (length)
h = L/(N-1);    % Grid spacing
x = (0:N-1)*h;  % x coordinate
y = (0:N-1)*h;  % y coordinate

%* Select over-relaxation factor (SOR only)
if( method == 3 )
  omegaOpt = 2/(1+sin(pi/N));  % Theoretical optimum
  fprintf('Theoretical optimum omega = %g \n',omegaOpt);
  omega = input('Enter desired omega: ');
end

%* Set initial guess as first term in separation of variables soln.
phi0 = 1;     % Potential at y=L
phi = phi0 * 4/(pi*sinh(pi)) * sin(pi*x'/L)*sinh(pi*y/L); 

%* Set boundary conditions
phi(1,:) = 0;  phi(N,:) = 0;  phi(:,1) = 0;
phi(:,N) = phi0*ones(N,1);    
fprintf('Potential at y=L equals %g \n',phi0);
fprintf('Potential is zero on all other boundaries\n');

%* Loop until desired fractional change per iteration is obtained
flops(0);               % Reset the flops counter to zero;
newphi = phi;           % Copy of the solution (used only by Jacobi)
iterMax = N^2;          % Set max to avoid excessively long runs
changeDesired = 1e-4;   % Stop when the change is given fraction
fprintf('Desired fractional change = %g\n',changeDesired);
for iter=1:iterMax
  changeSum = 0;
  
  if( method == 1 )      %% Jacobi method %%
    for i=2:(N-1)        % Loop over interior points only
     for j=2:(N-1)     
       newphi(i,j) = .25*(phi(i+1,j)+phi(i-1,j)+ ...
                               phi(i,j-1)+phi(i,j+1));
       changeSum = changeSum + abs(1-phi(i,j)/newphi(i,j));
     end
    end
    phi = newphi;   
	
  elseif( method == 2 )  %% G-S method %%
    for i=2:(N-1)        % Loop over interior points only
     for j=2:(N-1)     
       newphi = .25*(phi(i+1,j)+phi(i-1,j)+ ...
                                phi(i,j-1)+phi(i,j+1));
       changeSum = changeSum + abs(1-phi(i,j)/newphi);
       phi(i,j) = newphi;
     end
    end
 
  else                   %% SOR method %%    
    for i=2:(N-1)        % Loop over interior points only
     for j=2:(N-1)     
       newphi = 0.25*omega*(phi(i+1,j)+phi(i-1,j)+ ...
               phi(i,j-1)+phi(i,j+1))  +  (1-omega)*phi(i,j);
       changeSum = changeSum + abs(1-phi(i,j)/newphi);
       phi(i,j) = newphi;
     end
    end
  end 

  %* Check if fractional change is small enough to halt the iteration
  change(iter) = changeSum/(N-2)^2;
  if( rem(iter,10) < 1 )
    fprintf('After %g iterations, fractional change = %g\n',...
                            iter,change(iter));
  end						
  if( change(iter) < changeDesired ) 
    fprintf('Desired accuracy achieved after %g iterations\n',iter); 
	fprintf('Breaking out of main loop\n');
    break;
  end
end

%* Plot final estimate of potential as contour and surface plots
figure(1); clf;
cLevels = 0:(0.1):1;    % Contour levels
cs = contour(x,y,flipud(rot90(phi)),cLevels); 
xlabel('x'); ylabel('y'); clabel(cs);
title(sprintf('Potential after %g iterations',iter));
figure(2); clf;
mesh(x,y,flipud(rot90(phi)));
xlabel('x'); ylabel('y'); zlabel('\Phi(x,y)');

%* Plot the fractional change versus iteration
figure(3); clf;
semilogy(change);
xlabel('Iteration');  ylabel('Fractional change');
title(sprintf('Number of flops = %g\n',flops));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -