📄 fet410_ta_uart2400.c
字号:
//******************************************************************************
// MSP-FET430P410 Demo - Timer_A UART 2400 Ultra-low Power Echo, 32kHz ACLK
//
// Description: Use timer_A CCR0 hardware output modes and SCCI data latch to
// to implement UART function @ 2400 baud. Software does not directly read and
// write to RX and TX pins, instead proper use of output modes and SCCI data
// latch are demonstrated. Use of these hardware features eliminates ISR
// latency effects as hardware insures that output and input bit latching and
// timing are perfectly synchronized with timer_A regardless of other
// software activity. In the Mainloop the UART function readies the UART to
// receive one character and waits in LPM3 with all activity interrupt driven.
// After a character has been received, the UART receive function forces exit
// from LPM3 in the Mainloop which echo's back the received character.
// ACLK = TACLK = LFXT1 = 32768, MCLK = SMCLK = DCO = 32xACLK = 1048576
// //*An external watch crystal is required on XIN XOUT for ACLK*//
//
// MSP430F413
// -----------------
// /|\| XIN|-
// | | | 32kHz
// --|RST XOUT|-
// | |
// | CCI0B/RX/P1.1|<----------
// | | 2400 8N1
// | CCI0A/TX/P1.0|---------->
//
#define RXD 0x02 // RXD on P1.1
#define TXD 0x01 // TXD on P1.0
// Conditions for 2400 Baud SW UART, ACLK = 32768
#define Bitime_5 0x06 // ~ 0.5 bit length + small adjustment
#define Bitime 0x0E // 427us bit length ~ 2341 baud
unsigned int RXTXData;
unsigned char BitCnt;
void TX_Byte (void);
void RX_Ready (void);
// M.Buccini
// Texas Instruments, Inc
// March 2002
//******************************************************************************
#include <msp430x41x.h>
void main (void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
FLL_CTL0 |= XCAP14PF; // Configure load caps
CCTL0 = OUT; // TXD Idle as Mark
TACTL = TASSEL0+MC1; // ACLK, continous mode
P1SEL = TXD + RXD; // PP1.0/1 TA0 for TXD/RXD function
P1DIR = TXD; // TXD output on P1
// Mainloop
for (;;)
{
RX_Ready(); // UART ready to RX one Byte
_BIS_SR(LPM3_bits+GIE); // Enter LPM3 Until character RXed
TX_Byte(); // TX Back RXed Byte Received
}
}
// Function Transmits Character from RXTXData Buffer
void TX_Byte (void)
{
BitCnt = 0xA; // Load Bit counter, 8data + ST/SP
CCR0 = TAR; // Current state of TA counter
CCR0 += Bitime; // Some time till first bit
RXTXData |= 0x100; // Add mark stop bit to RXTXData
RXTXData = RXTXData << 1; // Add space start bit
CCTL0 = OUTMOD0+CCIE; // TXD = mark = idle
while ( CCTL0 & CCIE ); // Wait for TX completion
}
// Function Readies UART to Receive Character into RXTXData Buffer
void RX_Ready (void)
{
BitCnt = 0x8; // Load Bit counter
CCTL0 = SCS+CCIS0+OUTMOD0+CM1+CAP+CCIE; // Sync, Neg Edge, Capture
}
// Timer A0 interrupt service routine
interrupt[TIMERA0_VECTOR] void Timer_A (void)
{
CCR0 += Bitime; // Add Offset to CCR0
// RX
if (CCTL0 & CCIS0) // RX on CCI0B?
{
if( CCTL0 & CAP ) // Capture mode = start bit edge
{
CCTL0 &= ~ CAP; // Switch from capture to compare mode
CCR0 += Bitime_5;
}
else
{
RXTXData = RXTXData >> 1;
if (CCTL0 & SCCI) // Get bit waiting in receive latch
RXTXData |= 0x80;
BitCnt --; // All bits RXed?
if ( BitCnt == 0)
//>>>>>>>>>> Decode of Received Byte Here <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
{
CCTL0 &= ~ CCIE; // All bits RXed, disable interrupt
_BIC_SR_IRQ(LPM3_bits); // Clear LPM3 bits from 0(SR)
}
//>>>>>>>>>> Decode of Received Byte Here <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
}
}
// TX
else
{
if ( BitCnt == 0)
CCTL0 &= ~ CCIE; // All bits TXed, disable interrupt
else
{
CCTL0 |= OUTMOD2; // TX Space
if (RXTXData & 0x01)
CCTL0 &= ~ OUTMOD2; // TX Mark
RXTXData = RXTXData >> 1;
BitCnt --;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -