⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adpcm_s.c

📁 G.726 ADPCM算法在C语言上的实现代码
💻 C
字号:
  
Copyright 1992 by Stichting Mathematisch Centrum, Amsterdam, The  
Netherlands.  
  
                        All Rights Reserved  
  
Permission to use, copy, modify, and distribute this software and its  
documentation for any purpose and without fee is hereby granted,  
provided that the above copyright notice appear in all copies and that  
both that copyright notice and this permission notice appear in  
supporting documentation, and that the names of Stichting Mathematisch  
Centrum or CWI not be used in advertising or publicity pertaining to  
distribution of the software without specific, written prior permission.  
  
STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO  
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE  
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES  
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN  
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT  
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.  
  
   
   
  
 IntelDVI ADPCM coderdecoder.  
  
 The algorithm for this coder was taken from the IMA Compatability Project  
 proceedings, Vol 2, Number 2; May 1992.  
  
 Version 1.0, 7-Jul-92.  
   
   
struct adpcm_state {   
    short      valprev_l;         Previous output value    
    char       index_l;           Index into stepsize table    
    short      valprev_r;         Previous output value    
    char       index_r;           Index into stepsize table    
};   
   
#ifndef __STDC__    
#define signed    
#endif    
   
#define NODIVMUL    
   
 Intel ADPCM step variation table    
static long indexTable[16] = {   
    -1, -1, -1, -1, 2, 4, 6, 8,   
    -1, -1, -1, -1, 2, 4, 6, 8,   
};   
   
static long stepsizeTable[89] = {   
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,   
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,   
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,   
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,   
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,   
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,   
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,   
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,   
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767   
};   
   
void   
adpcm_coder(indata, outdata, len, state)   
    short indata[];   
    char outdata[];   
    int len;   
    struct adpcm_state state;   
{   
    short inp;                         Input buffer pointer    
    signed char outp;          output buffer pointer    
    long val;                    Current input sample value    
    long sign;                   Current adpcm sign bit    
    long delta;                  Current adpcm output value    
    long step_l;                 Stepsize    
    long step_r;                 Stepsize    
    long valprev_l;              virtual previous output value    
    long valprev_r;              virtual previous output value    
    long vpdiff;                         Current change to valprev    
    long index_l;                Current step change index    
    long index_r;   
    long outputbuffer;           place to keep previous 4-bit value    
   
    outp = (signed char )outdata;   
    inp = indata;   
   
    valprev_l = state-valprev_l;   
    index_l = state-index_l;   
    step_l = stepsizeTable[index_l];   
    valprev_r = state-valprev_r;   
    index_r = state-index_r;   
    step_r = stepsizeTable[index_r];   
   
    for ( ; len  0 ; len-- )   
    {   
          
        LEFT CHANNEL    
          
       val = inp++;   
        Step 1 - compute difference with previous value    
       delta = val - valprev_l;   
       sign = (delta  0)  8  0;   
       if ( sign ) delta = (-delta);   
   
        Step 2 - Divide and clamp    
#ifdef NODIVMUL    
        {   
           long tmp = 0;   
   
           vpdiff = 0;   
           if ( delta  step_l ) {   
               tmp = 4;   
               delta -= step_l;   
               vpdiff = step_l;   
           }   
           step_l = 1;   
           if ( delta  step_l ) {   
               tmp = 2;   
               delta -= step_l;   
               vpdiff += step_l;   
           }   
           step_l = 1;   
           if ( delta  step_l ) {   
               tmp = 1;   
               vpdiff += step_l;   
           }   
           delta = tmp;   
       }   
#else    
       delta = (delta2)  step_l;   
       if ( delta  7 ) delta = 7;   
   
       vpdiff = (deltastep_l)  2;   
#endif    
   
        Step 3 - Update previous value    
       if ( sign )   
         valprev_l -= vpdiff;   
       else   
         valprev_l += vpdiff;   
   
        Step 4 - Clamp previous value to 16 bits    
       if ( valprev_l  32767 )   
         valprev_l = 32767;   
       else if ( valprev_l  -32768 )   
         valprev_l = -32768;   
   
        Step 5 - Assemble value, update index and step values    
       delta = sign;   
   
       index_l += indexTable[delta];   
       if ( index_l  0 ) index_l = 0;   
       if ( index_l  88 ) index_l = 88;   
       step_l = stepsizeTable[index_l];   
   
        Step 6 - Output value    
       outputbuffer = (delta  4) & 0xf0;   
          
        RIGHT CHANNEL    
          
       val = inp++;   
        Step 1 - compute difference with previous value    
       delta = val - valprev_r;   
       sign = (delta  0)  8  0;   
       if ( sign ) delta = (-delta);   
   
        Step 2 - Divide and clamp    
#ifdef NODIVMUL    
        {   
           long tmp = 0;   
   
           vpdiff = 0;   
           if ( delta  step_r ) {   
               tmp = 4;   
               delta -= step_r;   
               vpdiff = step_r;   
           }   
           step_r = 1;   
           if ( delta  step_r ) {   
               tmp = 2;   
               delta -= step_r;   
               vpdiff += step_r;   
           }   
           step_r = 1;   
           if ( delta  step_r ) {   
               tmp = 1;   
               vpdiff += step_r;   
           }   
           delta = tmp;   
       }   
#else    
       delta = (delta2)  step_r;   
       if ( delta  7 ) delta = 7;   
   
       vpdiff = (deltastep_r)  2;   
#endif    
   
        Step 3 - Update previous value    
       if ( sign )   
         valprev_r -= vpdiff;   
       else   
         valprev_r += vpdiff;   
   
        Step 4 - Clamp previous value to 16 bits    
       if ( valprev_r  32767 )   
         valprev_r = 32767;   
       else if ( valprev_r  -32768 )   
         valprev_r = -32768;   
   
        Step 5 - Assemble value, update index and step values    
       delta = sign;   
   
       index_r += indexTable[delta];   
       if ( index_r  0 ) index_r = 0;   
       if ( index_r  88 ) index_r = 88;   
       step_r = stepsizeTable[index_r];   
   
        Step 6 - Output value    
       outp++ = (delta & 0x0f)  outputbuffer;   
    }   
   
    state-valprev_l = valprev_l;   
    state-index_l = index_l;   
    state-valprev_r = valprev_r;   
    state-index_r = index_r;   
}   
   
void   
adpcm_decoder(indata, outdata, len, state)   
    char indata[];   
    short outdata[];   
    int len;   
    struct adpcm_state state;   
{   
    signed char inp;           Input buffer pointer    
    short outp;                output buffer pointer    
    long sign;                   Current adpcm sign bit    
    long delta;                  Current adpcm output value    
    long step_l;                 Stepsize    
    long step_r;                 Stepsize    
    long valprev_l;              virtual previous output value    
    long valprev_r;              virtual previous output value    
    long vpdiff;                         Current change to valprev    
    long index_l;                Current step change index    
    long index_r;                Current step change index    
    long inputbuffer;            place to keep next 4-bit value    
   
    outp = outdata;   
    inp = (signed char )indata;   
   
    valprev_l = state-valprev_l;   
    index_l = state-index_l;   
    step_l = stepsizeTable[index_l];   
    valprev_r = state-valprev_r;   
    index_r = state-index_r;   
    step_r = stepsizeTable[index_r];   
   
    for ( ; len  0 ; len-- )   
    {   
          
        LEFT CHANNEL    
          
        Step 1 - get the delta value and compute next index    
       inputbuffer = inp++;   
       delta = (inputbuffer  4) & 0xf;   
   
         Step 2 - Find new index value (for later)    
        index_l += indexTable[delta];   
        if ( index_l  0 )   
        {   
            index_l = 0;   
        }   
        else if ( index_l  88 )   
        {   
            index_l = 88;   
        }   
   
        Step 3 - Separate sign and magnitude    
       sign = delta & 8;   
       delta = delta & 7;   
   
        Step 4 - update output value    
#ifdef NODIVMUL    
        vpdiff = 0;   
        if ( delta & 4 )   
        {   
            vpdiff  = (step_l  2);   
        }   
        if ( delta & 2 )   
        {   
            vpdiff += (step_l  1);   
        }   
        if ( delta & 1 )   
        {   
            vpdiff += step_l;   
        }   
        vpdiff = 2;   
#else    
        vpdiff = (deltastep_l)  2;   
#endif    
       if ( sign )   
         valprev_l -= vpdiff;   
       else   
         valprev_l += vpdiff;   
   
        Step 5 - clamp output value    
       if ( valprev_l  32767 )   
         valprev_l = 32767;   
       else if ( valprev_l  -32768 )   
         valprev_l = -32768;   
   
        Step 6 - Update step value    
       step_l = stepsizeTable[index_l];   
   
        Step 7 - Output value    
       outp++ = valprev_l;   
          
        RIGHT CHANNEL    
          
        Step 1 - get the delta value and compute next index    
       delta = inputbuffer & 0xf;   
   
         Step 2 - Find new index value (for later)    
        index_r += indexTable[delta];   
        if ( index_r  0 )   
        {   
            index_r = 0;   
        }   
        else if ( index_r  88 )   
        {   
            index_r = 88;   
        }   
   
        Step 3 - Separate sign and magnitude    
       sign = delta & 8;   
       delta = delta & 7;   
   
        Step 4 - update output value    
#ifdef NODIVMUL    
        vpdiff = 0;   
        if ( delta & 4 )   
        {   
            vpdiff  = (step_r  2);   
        }   
        if ( delta & 2 )   
        {   
            vpdiff += (step_r  1);   
        }   
        if ( delta & 1 )   
        {   
            vpdiff += step_r;   
        }   
        vpdiff = 2;   
#else    
        vpdiff = (deltastep_r)  2;   
#endif    
       if ( sign )   
         valprev_r -= vpdiff;   
       else   
         valprev_r += vpdiff;   
   
        Step 5 - clamp output value    
       if ( valprev_r  32767 )   
         valprev_r = 32767;   
       else if ( valprev_r  -32768 )   
         valprev_r = -32768;   
   
        Step 6 - Update step value    
       step_r = stepsizeTable[index_r];   
   
        Step 7 - Output value    
       outp++ = valprev_r;   
    }   
   
    state-valprev_l = valprev_l;   
    state-index_l = index_l;   
    state-valprev_r = valprev_r;   
    state-index_r = index_r;   
}   

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -