⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svd.cpp

📁 完整的RTP RTSP代码库
💻 CPP
字号:
/*************************************************************************This software module was originally developed by 	Ming-Chieh Lee (mingcl@microsoft.com), Microsoft Corporation	Wei-ge Chen (wchen@microsoft.com), Microsoft Corporation	Bruce Lin (blin@microsoft.com), Microsoft Corporation	Chuang Gu (chuanggu@microsoft.com), Microsoft Corporation	(date: March, 1996)in the course of development of the MPEG-4 Video (ISO/IEC 14496-2). This software module is an implementation of a part of one or more MPEG-4 Video tools as specified by the MPEG-4 Video. ISO/IEC gives users of the MPEG-4 Video free license to this software module or modifications thereof for use in hardware or software products claiming conformance to the MPEG-4 Video. Those intending to use this software module in hardware or software products are advised that its use may infringe existing patents. The original developer of this software module and his/her company, the subsequent editors and their companies, and ISO/IEC have no liability for use of this software module or modifications thereof in an implementation. Copyright is not released for non MPEG-4 Video conforming products. Microsoft retains full right to use the code for his/her own purpose, assign or donate the code to a third party and to inhibit third parties from using the code for non <MPEG standard> conforming products. This copyright notice must be included in all copies or derivative works. Copyright (c) 1996, 1997.Module Name:	svd.cppAbstract:	Solution of Linear Algebraic Equations Revision History:*************************************************************************/#include <stdlib.h>#include <math.h>#include "basic.hpp"#ifdef __MFC_#ifdef _DEBUG#undef THIS_FILEstatic char BASED_CODE THIS_FILE[] = __FILE__;#endif#define new DEBUG_NEW				   #endif // __MFC_#define irowNull		(-1)__inline static void SwapRow(Double *rgcoeff, Double *rgrhs, Int crow,	Int irow1, Int irow2);__inline static void EliminateColumn(Double *rgcoeff, Double *rgrhs, Int crow,	Int irowPiv);__inline static void BackSub(Double *rgcoeff, Double *rgrhs, Int crow);__inline static Int RowPivot(Double *rgcoeff, Int crow, Int irowBeg);Int FSolveLinEq(Double *rgcoeff, Double *rgrhs, Int crow)	{	Int irow;	for (irow = 0; irow < crow; irow++)		{		Int irowPivot = RowPivot(rgcoeff, crow, irow);		if (irowPivot == irowNull)			return FALSE;				SwapRow(rgcoeff, rgrhs, crow, irow, irowPivot);		EliminateColumn(rgcoeff, rgrhs, crow, irow);		}	BackSub(rgcoeff, rgrhs, crow);	return TRUE;	}// Assumes that columns till column irow1 have been eliminated from the // rows irow1 & irow2__inline static void SwapRow(Double *rgcoeff, Double *rgrhs, Int crow,	Int irow1, Int irow2)	{	Int icol;	Double coeffT, rhsT;	Double *pcoeffRow1 = &rgcoeff[crow * irow1];	Double *pcoeffRow2 = &rgcoeff[crow * irow2];	for (icol = irow1; icol < crow; icol++)		{		coeffT = pcoeffRow1[icol];		pcoeffRow1[icol] = pcoeffRow2[icol];		pcoeffRow2[icol] = coeffT;		}	rhsT = rgrhs[irow1];	rgrhs[irow1] = rgrhs[irow2];	rgrhs[irow2] = rhsT;	}__inline static void EliminateColumn(Double *rgcoeff, Double *rgrhs, Int crow,	Int irowPiv)	{	Double *rgcoeffRowPiv = &rgcoeff[irowPiv * crow];	Int irow;	for (irow = irowPiv + 1; irow < crow; irow++)		{		Int icol;		Double *rgcoeffRowCur = &rgcoeff[irow * crow];		Double coeffMult;		coeffMult = - (rgcoeffRowCur[irowPiv] / rgcoeffRowPiv[irowPiv]);		for (icol = irowPiv + 1; icol < crow; icol++)			rgcoeffRowCur[icol] += coeffMult * rgcoeffRowPiv[icol];		rgrhs[irow] += coeffMult * rgrhs[irowPiv];		}	}__inline static void BackSub(Double *rgcoeff, Double *rgrhs, Int crow)	{	Int irow;	for (irow = crow - 1; irow >= 0; irow--)		{		Double *rgcoeffRow = &rgcoeff[irow * crow];		Double rhsRow = rgrhs[irow];		Int icol;		for (icol = irow + 1; icol < crow; icol++)			rhsRow -= rgcoeffRow[icol] * rgrhs[icol];		rgrhs[irow] = rhsRow / rgcoeffRow[irow];		}	}__inline static Int RowPivot(Double *rgcoeff, Int crow, Int irowBeg)	{	Int irow;	Int irowPivot = irowBeg;	Double coeffPivot = rgcoeff[irowBeg * crow + irowBeg];	if (coeffPivot < 0.0f)		coeffPivot = -coeffPivot;	for (irow = irowBeg + 1; irow < crow; irow++)		{		Double coeffRow = rgcoeff[irow * crow + irowBeg];		if (coeffRow < 0.0f)			coeffRow = -coeffRow;		if (coeffRow > coeffPivot)			{			coeffPivot = coeffRow;			irowPivot = irow;			}		}	if (coeffPivot == 0.0f)		irowPivot = irowNull;	return irowPivot;	}Double* linearLS (Double** Ain, Double* b, UInt n_row, UInt n_col){	assert (n_row == n_col); // make sure of overdeterminancy	Double* x = new Double [n_row + 1];	Double* A = new Double [n_row * n_col];	UInt count = 0;	UInt i;	for (i = 0; i < n_row; i++)		for (UInt j = 0; j < n_col; j++)			A[count++] = Ain[i][j];		FSolveLinEq (A, b, n_row);	for (i = 0; i < n_row; i++)	{		x[i] = b[i];	}	delete [] A;	x [n_row] = 1.0;	return x;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -