📄 svd.cpp
字号:
/*************************************************************************This software module was originally developed by Ming-Chieh Lee (mingcl@microsoft.com), Microsoft Corporation Wei-ge Chen (wchen@microsoft.com), Microsoft Corporation Bruce Lin (blin@microsoft.com), Microsoft Corporation Chuang Gu (chuanggu@microsoft.com), Microsoft Corporation (date: March, 1996)in the course of development of the MPEG-4 Video (ISO/IEC 14496-2). This software module is an implementation of a part of one or more MPEG-4 Video tools as specified by the MPEG-4 Video. ISO/IEC gives users of the MPEG-4 Video free license to this software module or modifications thereof for use in hardware or software products claiming conformance to the MPEG-4 Video. Those intending to use this software module in hardware or software products are advised that its use may infringe existing patents. The original developer of this software module and his/her company, the subsequent editors and their companies, and ISO/IEC have no liability for use of this software module or modifications thereof in an implementation. Copyright is not released for non MPEG-4 Video conforming products. Microsoft retains full right to use the code for his/her own purpose, assign or donate the code to a third party and to inhibit third parties from using the code for non <MPEG standard> conforming products. This copyright notice must be included in all copies or derivative works. Copyright (c) 1996, 1997.Module Name: svd.cppAbstract: Solution of Linear Algebraic Equations Revision History:*************************************************************************/#include <stdlib.h>#include <math.h>#include "basic.hpp"#ifdef __MFC_#ifdef _DEBUG#undef THIS_FILEstatic char BASED_CODE THIS_FILE[] = __FILE__;#endif#define new DEBUG_NEW #endif // __MFC_#define irowNull (-1)__inline static void SwapRow(Double *rgcoeff, Double *rgrhs, Int crow, Int irow1, Int irow2);__inline static void EliminateColumn(Double *rgcoeff, Double *rgrhs, Int crow, Int irowPiv);__inline static void BackSub(Double *rgcoeff, Double *rgrhs, Int crow);__inline static Int RowPivot(Double *rgcoeff, Int crow, Int irowBeg);Int FSolveLinEq(Double *rgcoeff, Double *rgrhs, Int crow) { Int irow; for (irow = 0; irow < crow; irow++) { Int irowPivot = RowPivot(rgcoeff, crow, irow); if (irowPivot == irowNull) return FALSE; SwapRow(rgcoeff, rgrhs, crow, irow, irowPivot); EliminateColumn(rgcoeff, rgrhs, crow, irow); } BackSub(rgcoeff, rgrhs, crow); return TRUE; }// Assumes that columns till column irow1 have been eliminated from the // rows irow1 & irow2__inline static void SwapRow(Double *rgcoeff, Double *rgrhs, Int crow, Int irow1, Int irow2) { Int icol; Double coeffT, rhsT; Double *pcoeffRow1 = &rgcoeff[crow * irow1]; Double *pcoeffRow2 = &rgcoeff[crow * irow2]; for (icol = irow1; icol < crow; icol++) { coeffT = pcoeffRow1[icol]; pcoeffRow1[icol] = pcoeffRow2[icol]; pcoeffRow2[icol] = coeffT; } rhsT = rgrhs[irow1]; rgrhs[irow1] = rgrhs[irow2]; rgrhs[irow2] = rhsT; }__inline static void EliminateColumn(Double *rgcoeff, Double *rgrhs, Int crow, Int irowPiv) { Double *rgcoeffRowPiv = &rgcoeff[irowPiv * crow]; Int irow; for (irow = irowPiv + 1; irow < crow; irow++) { Int icol; Double *rgcoeffRowCur = &rgcoeff[irow * crow]; Double coeffMult; coeffMult = - (rgcoeffRowCur[irowPiv] / rgcoeffRowPiv[irowPiv]); for (icol = irowPiv + 1; icol < crow; icol++) rgcoeffRowCur[icol] += coeffMult * rgcoeffRowPiv[icol]; rgrhs[irow] += coeffMult * rgrhs[irowPiv]; } }__inline static void BackSub(Double *rgcoeff, Double *rgrhs, Int crow) { Int irow; for (irow = crow - 1; irow >= 0; irow--) { Double *rgcoeffRow = &rgcoeff[irow * crow]; Double rhsRow = rgrhs[irow]; Int icol; for (icol = irow + 1; icol < crow; icol++) rhsRow -= rgcoeffRow[icol] * rgrhs[icol]; rgrhs[irow] = rhsRow / rgcoeffRow[irow]; } }__inline static Int RowPivot(Double *rgcoeff, Int crow, Int irowBeg) { Int irow; Int irowPivot = irowBeg; Double coeffPivot = rgcoeff[irowBeg * crow + irowBeg]; if (coeffPivot < 0.0f) coeffPivot = -coeffPivot; for (irow = irowBeg + 1; irow < crow; irow++) { Double coeffRow = rgcoeff[irow * crow + irowBeg]; if (coeffRow < 0.0f) coeffRow = -coeffRow; if (coeffRow > coeffPivot) { coeffPivot = coeffRow; irowPivot = irow; } } if (coeffPivot == 0.0f) irowPivot = irowNull; return irowPivot; }Double* linearLS (Double** Ain, Double* b, UInt n_row, UInt n_col){ assert (n_row == n_col); // make sure of overdeterminancy Double* x = new Double [n_row + 1]; Double* A = new Double [n_row * n_col]; UInt count = 0; UInt i; for (i = 0; i < n_row; i++) for (UInt j = 0; j < n_col; j++) A[count++] = Ain[i][j]; FSolveLinEq (A, b, n_row); for (i = 0; i < n_row; i++) { x[i] = b[i]; } delete [] A; x [n_row] = 1.0; return x;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -