⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bpwj.c

📁 采用C编写的BP神经网络一个程序
💻 C
字号:

#pragma hdrstop

#include <stdio.h>
#include <iostream.h>

const A=30.0;
const B=10.0;
const MAX=500;       //最大训练次数
const COEF=0.0035; //网络的学习效率
const BCOEF=0.001;//网络的阀值调整效率
const ERROR=0.002  ; // 网络训练中的允许误差
const ACCURACY=0.0005;//网络要求精度
double sample[41][4]={{0,0,0,0},{5,1,4,19.020},{5,3,3,14.150},
                            {5,5,2,14.360},{5,3,3,14.150},{5,3,2,15.390},
                            {5,3,2,15.390},{5,5,1,19.680},{5,1,2,21.060},
                            {5,3,3,14.150},{5,5,4,12.680},{5,5,2,14.360},
                            {5,1,3,19.610},{5,3,4,13.650},{5,5,5,12.430},
                            {5,1,4,19.020},{5,1,4,19.020},{5,3,5,13.390},
                            {5,5,4,12.680},{5,1,3,19.610},{5,3,2,15.390},
                            {1,3,1,11.110},{1,5,2,6.521},{1,1,3,10.190},
                            {1,3,4,6.043},{1,5,5,5.242},{1,5,3,5.724},
                            {1,1,4,9.766},{1,3,5,5.870},{1,5,4,5.406},
                            {1,1,3,10.190},{1,1,5,9.545},{1,3,4,6.043},
                            {1,5,3,5.724},{1,1,2,11.250},{1,3,1,11.110},
                            {1,3,3,6.380},{1,5,2,6.521},{1,1,1,16.000},
                            {1,3,2,7.219},{1,5,3,5.724}};


double w[4][10][10],wc[4][10][10],b[4][10],bc[4][10];
double o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差
double is; //全体样本均方差
int count,a;

void netout(int m, int n);//计算网络隐含层和输出层的输出
void calculd(int m,int n); //计算网络的反向传播误差
void calcalwc(int m,int n);//计算网络权值的调整量
void calcaulbc(int m,int n); //计算网络阀值的调整量
void changew(int m,int n); //调整网络权值
void changeb(int m,int n);//调整网络阀值
void clearwc(int m,int n);//清除网络权值变化量wc
void clearbc(int m,int n);//清除网络阀值变化量bc
void initialw(void);//初始化NN网络权值W
void initialb(void); //初始化NN网络阀值
void calculdiffer(void);//计算NN网络单个样本误差
void calculis(void);//计算NN网络全体样本误差
void trainNN(void);//训练NN网络


/*计算NN网络隐含层和输出层的输出 */
void netout(int m,int n)
{
  int i,j,k;

  //隐含层各节点的的输出
  for (j=1,i=2;j<=m;j++) //m为隐含层节点个数
  {
    netin[i][j]=0.0;
    for(k=1;k<=3;k++)//隐含层的每个节点均有三个输入变量
      netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
    netin[i][j]=netin[i][j]-b[i][j];
   o[i][j]=A/(1+exp(-netin[i][j]/B));
  }

  //输出层各节点的输出
  for (j=1,i=3;j<=n;j++)
  {
    netin[i][j]=0.0;
    for (k=1;k<=m;k++)
      netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];
    netin[i][j]=netin[i][j]-b[i][j];
    o[i][j]=A/(1+exp(-netin[i][j]/B)) ;
  }
}


/*计算NN网络的反向传播误差*/
void calculd(int m,int n)
{
   int i,j,k;
   double t;
   a=count-1;
  d[3][1]=(o[3][1]-sample[a][3])*(A/B)*exp(-netin[3][1]/B)/pow(1+exp(-netin[3][1]/B),2);

   //隐含层的误差
   for (j=1,i=2;j<=m;j++)
   {
     t=0.00;
     for (k=1;k<=n;k++)
       t=t+w[i+1][j][k]*d[i+1][k];
        d[i][j]=t*(A/B)*exp(-netin[i][j]/B)/pow(1+exp(-netin[i][j]/B),2);
   }
}


/*计算网络权值W的调整量*/
void calculwc(int m,int n)
{
  int i,j,k;

 // 输出层(第三层)与隐含层(第二层)之间的连接权值的调整
  for (i=1,k=3;i<=m;i++)
  {
    for (j=1;j<=n;j++)
    {
      wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
    }
   // printf("\n");
  }
  //隐含层与输入层之间的连接权值的调整
  for (i=1,k=2;i<=m;i++)
  {
    for (j=1;j<=m;j++)
    {
      wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];
    }
  //  printf("\n");
  }

}

/*计算网络阀值的调整量*/
void calculbc(int m,int n)
{
  int j;
  for (j=1;j<=m;j++)
  {
    bc[2][j]=BCOEF*d[2][j];
  }
  for (j=1;j<=n;j++)
  {
    bc[3][j]=BCOEF*d[3][j];
  }
}

/*调整网络权值*/
void changw(int m,int n)
{
  int i,j;
  for (i=1;i<=3;i++)
    for (j=1;j<=m;j++)
    {
      w[2][i][j]=0.9*w[2][i][j]+wc[2][i][j];
      //为了保证系统有较好的鲁棒性,计算权值时乘惯性系数0.9
      printf("w[2][%d][%d]=%f\n",i,j,w[2][i][j]);
    }
  for (i=1;i<=m;i++)
    for (j=1;j<=n;j++)
    {
      w[3][i][j]=0.9*w[3][i][j]+wc[3][i][j];
      printf("w[3][%d][%d]=%f\n",i,j,w[3][i][j]);
    }
}

/*调整网络阀值*/
void changb(int m,int n)
{
  int j;
  for (j=1;j<=m;j++)
    b[2][j]=b[2][j]+bc[2][j];

  for (j=1;j<=n;j++)
    b[3][j]=b[3][j]+bc[3][j];
}

/*清除网络权值变化量wc*/
void clearwc(void)
{
  for (int i=0;i<4;i++)
    for (int j=0;j<10;j++)
      for (int k=0;k<10;k++)
        wc[i][j][k]=0.00;
}

/*清除网络阀值变化量*/
void clearbc(void)
{
  for (int i=0;i<4;i++)
    for (int j=0;j<10;j++)
      bc[i][j]=0.00;
}

/*初始化网络权值W*/
void initialw(void)
{
  int i,j,k,x;
  double weight;
  for (i=0;i<4;i++)
    for (j=0;j<10;j++)
      for (k=0;k<10;k++)
      {
        randomize();
        x=100+random(400);
        weight=(double)x/5000.00;
        w[i][j][k]=weight;
      }
}


/*初始化网络阀值*/
void initialb(void)
{
  int i,j,x;
  double fazhi;
  for (i=0;i<4;i++)
   for (j=0;j<10;j++)
   {
     randomize();
     for (int k=0;k<12;k++)
     {
       x=100+random(400);
     }
     fazhi=(double)x/50000.00;
     b[i][j]=fazhi;
   }
}

/*计算网络单个样本误差*/
void calculdiffer(void)
{
  a=count-1;
  differ=0.5*(o[3][1]-sample[a][3])*(o[3][1]-sample[a][3]);
}

void calculis(void)
{
  int i;
  is=0.0;
  for (i=0;i<=19;i++)
  {
    o[1][1]=sample[i][0];
    o[1][2]=sample[i][1];
    o[1][3]=sample[i][2];
    netout(8,1);
    is=is+(o[3][1]-sample[i][3])*(o[3][1]-sample[i][3]);
  }
  is=is/20;
}

/*训练网络*/
void trainNN(void)
{
  long int time;
  int i,x[4];
  initialw();
  initialb();

  for (time=1;time<=MAX;time++)
  {
    count=0;
    while(count<=40)
    {
      o[1][1]=sample[count][0];
      o[1][2]=sample[count][1];
      o[1][3]=sample[count][2];

      count=count+1;
      clearwc();
      clearbc();
      netout(8,1);
      calculdiffer();
      while(differ>ERROR)
      {
        calculd(8,1);
        calculwc(8,1);
        calculbc(8,1);
        changw(8,1);
        changb(8,1);
        netout(8,1);
        calculdiffer();
      }
    }
    printf("This is %d times training NN...\n",time);
    calculis();
    printf("is==%f\n",is);
    if (is<ACCURACY) break;
  }
}










//---------------------------------------------------------------------------

#pragma argsused
int main(int argc, char* argv[])
{
  double result;
  int m,test[4];
  char ch='y';
  cout<<"Please wait for the train of NN:"<<endl;
  trainNN();
  cout<<"Now,this modular network can work for you."<<endl;

  while(ch=='y' || ch=='Y')
  {
   cout<<"Please input data to be tested."<<endl;
    for (m=1;m<=3;m++)
    cin>>test[m];
    ch=getchar();
    o[1][1]=test[1];
    o[1][2]=test[2];
    o[1][3]=test[3];
    netout(8,1);
    result=o[3][1];
    printf("Final result is %f.\n",result);
    printf("Still test?[Yes] or [No]\n");
    ch=getchar();
  }


        return 0;
}
//---------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -