📄 interpolation.inl
字号:
// Interpolation.inl 插值函数定义(实现)头文件
// Ver 1.0.0.0
// 版权所有(C) 何渝(HE Yu) 2002
// 最后修改: 2002.5.31.
#ifndef _INTERPOLATION_INL //避免多次编译
#define _INTERPOLATION_INL
#include <valarray> //数组模板类标准头文件
#include "Matrix.h" //矩阵类头文件
#include "comm.h" //公共头文件
//一元全区间不等距插值
template <class _Ty>
_Ty Interpolation1VariableNotIsometry(valarray<_Ty>& x,
valarray<_Ty>& y, _Ty t)
{
int i,j,k,m;
_Ty z(0), s;
int n = x.size(); //插值点个数(x数组元素个数)
if(n < 1) return(z);
if(n == 1)
{
z = y[0];
return(z);
}
if(n == 2)
{
z = (y[0] * (t - x[1]) - y[1] * (t - x[0])) / (x[0] - x[1]);
return(z);
}
i = 0;
while((x[i] < t) && (i < n)) i++;
k = i - 4;
if(k < 0) k = 0;
m = i + 3;
if(m > (n - 1)) m = n - 1;
for(i = k; i <= m; i ++)
{
s = 1.0;
for(j = k; j <= m; j ++)
{
if(j != i)
s = s * (t - x[j]) / (x[i] - x[j]);
}
z = z + s * y[i];
}
return(z);
}
//一元全区间等距插值
template <class _Ty>
_Ty Interpolation1VariableIsometry(_Ty x0, _Ty h, valarray<_Ty>& y, _Ty t)
{
int i, j, k, m;
_Ty z(0), s, xi, xj, p, q;
int n = y.size(); //等距结点的个数
if(n < 1) return(z);
if(n == 1)
{
z = y[0];
return(z);
}
if(n == 2)
{
z = (y[1] * (t - x0) - y[0] * (t - x0 - h)) / h;
return(z);
}
if(t > x0)
{
p = (t - x0) / h;
i = (int)p;
q = (float)i;
if(p > q) i++;
}
else i = 0;
k = i - 4;
if(k < 0) k = 0;
m = i + 3;
if(m > (n-1)) m = n - 1;
for(i = k; i<=m; i ++)
{
s = 1.0;
xi = x0 + i * h;
for(j = k; j<=m; j++)
if(j != i)
{
xj = x0 + j * h;
s = s * (t - xj) / (xi - xj);
}
z = z + s * y[i];
}
return(z);
}
//一元三点不等距插值
template <class _Ty>
_Ty Interpolation1Variable3PointsNotIsometry(valarray<_Ty>& x,
valarray<_Ty>& y, _Ty t)
{
int i, j, k, m;
_Ty z(0.0), s;
int n = x.size(); //给定不等距结点的个数
if(n < 1) return(z);
if(n==1)
{
z = y[0];
return(z);
}
if(n == 2)
{
z = (y[0] * (t - x[1]) - y[1] * (t - x[0])) / (x[0] - x[1]);
return(z);
}
if(t <= x[1])
{
k = 0;
m = 2;
}
else if(t >= x[n-2])
{
k = n - 3;
m = n - 1;
}
else
{
k = 1;
m = n;
while((m-k) != 1)
{
i = (k + m) / 2;
if(t < x[i - 1]) m = i;
else k = i;
}
k = k - 1;
m = m - 1;
if(Abs(t - x[k]) < Abs(t - x[m]))
k = k - 1;
else
m = m + 1;
}
z = 0.0;
for(i = k; i <= m; i ++)
{
s = 1.0;
for(j = k;j <= m; j ++)
if(j != i) s = s * (t - x[j]) / (x[i] - x[j]);
z = z + s * y[i];
}
return(z);
}
//一元三点等距插值
template <class _Ty>
_Ty Interpolation1Variable3PointsIsometry(_Ty x0, _Ty h,
valarray<_Ty>& y, _Ty t)
{
int i, j, k, m;
_Ty z(0.0), s, xi, xj;
int n = y.size(); //给定等距结点的个数
if(n < 1) return(z);
if(n == 1)
{
z = y[0];
return(z);
}
if(n == 2)
{
z = (y[1] * (t - x0) - y[0] * (t - x0 - h)) / h;
return(z);
}
if(t <= (x0 + h))
{
k = 0;
m = 2;
}
else if(t >= (x0+(n-3)*h))
{
k = n -3 ;
m = n - 1;
}
else
{
i = (int)((t - x0) / h) + 1;
if(Abs(t - x0 - i * h) >= Abs(t - x0 - (i - 1) * h))
{
k = i - 2;
m = i;
}
else
{
k = i - 1;
m = i + 1;
}
}
z = 0.0;
for(i = k; i <= m; i ++)
{
s = 1.0;
xi = x0 + i * h;
for(j = k; j <= m; j++)
if(j != i)
{
xj = x0 + j * h;
s = s * (t - xj) / (xi - xj);
}
z = z + s * y[i];
}
return(z);
}
//连分式不等距插值
template <class _Ty>
_Ty InterpolationFractionNotIsometry(valarray<_Ty>& x,
valarray<_Ty>& y, _Ty t)
{
int i,j,k,m,l;
_Ty z(0), h, b[8];
int n = x.size(); //给定不等距结点的个数
if(n < 1) return(z);
if(n == 1)
{
z = y[0];
return(z);
}
if(n <= 8)
{
k = 0;
m = n;
}
else if(t < x[4])
{
k = 0;
m = 8;
}
else if(t > x[n - 5])
{
k= n - 8;
m = 8;
}
else
{
k = 1;
j = n;
while((j-k) != 1)
{
i = (k + j) / 2;
if(t < x[i - 1]) j = i;
else k = i;
}
k = k - 4;
m = 8;
}
b[0] = y[k];
for(i = 2; i <= m; i ++)
{
h = y[i + k - 1];
l = 0;
j = 1;
while((l == 0) && (j <= i - 1))
{
if((Abs(h - b[j - 1]) + 1.0) == 1.0) l = 1;
else h = (x[i + k - 1] - x[j + k - 1]) / (h - b[j - 1]);
j = j + 1;
}
b[i - 1] = h;
if(l != 0)
{
b[i - 1] = 1.0e+35;
}
}
z = b[m - 1];
for(i = m - 1; i >= 1; i --)
{
z = b[i - 1] + (t - x[i + k - 1]) / z;
}
return(z);
}
//连分式等距插值
template <class _Ty>
_Ty InterpolationFractionIsometry(_Ty x0, _Ty h, valarray<_Ty>& y, _Ty t)
{
int i,j,k,m,l;
_Ty z(0.0), hh, xi, xj, b[8];
int n = y.size(); //给定等距结点的个数
if(n < 1) return(z);
if(n == 1)
{
z = y[0];
return(z);
}
if(n <= 8)
{
k = 0;
m = n;
}
else if(t < (x0 + 4.0 * h))
{
k = 0;
m = 8;
}
else if(t > (x0 + (n - 5) * h))
{
k = n - 8;
m = 8;
}
else
{
k = (int)((t - x0) / h) - 3;
m = 8;
}
b[0] = y[k];
for(i = 2; i <= m; i ++)
{
hh = y[i + k - 1];
l = 0;
j = 1;
while((l == 0) && (j <= (i - 1)))
{
if((Abs(hh - b[j - 1]) + 1.0) == 1.0 )
{
l=1;
}
else
{
xi = x0 + (i + k - 1) * h;
xj = x0 + (j + k - 1) * h;
hh = (xi - xj) / (hh - b[j - 1]);
}
j = j + 1;
}
b[i - 1] = hh;
if(l != 0)
{
b[i - 1] = 1.0e+35;
}
}
z = b[m - 1];
for(i = m - 1; i >= 1; i --)
{
z = b[i - 1] + (t - (x0 + (i + k - 1) * h)) / z;
}
return(z);
}
//埃尔米特不等距插值
template <class _Ty>
_Ty InterpolationHermiteNotIsometry(valarray<_Ty>& x,
valarray<_Ty>& y, valarray<_Ty>& dy, _Ty t)
{
int i,j;
_Ty z(0.0), p, q, s;
int n = y.size(); //给定不等距结点的个数
for(i = 1; i<=n; i ++)
{
s = 1.0;
for(j = 1; j <= n;j ++)
if(j != i)
{
s = s * (t - x[j - 1]) / (x[i - 1] - x[j - 1]);
}
s = s * s;
p = 0.0;
for(j = 1; j <= n; j++)
if(j!=i)
{
p = p + 1.0 / (x[i - 1] - x[j - 1]);
}
q = y[i - 1] + (t - x[i - 1]) * (dy[i - 1] - 2.0 * y[i - 1] * p);
z = z + q * s;
}
return(z);
}
//埃尔米特等距插值
template <class _Ty>
_Ty InterpolationHermiteIsometry(_Ty x0, _Ty h,
valarray<_Ty>& y, valarray<_Ty>& dy, _Ty t)
{
int i, j;
_Ty z(0.0), s, p, q;
int n = y.size(); //给定等距结点的个数
for(i = 1; i <= n; i ++)
{
s = 1.0;
q = x0 + (i - 1) * h;
for(j = 1; j <= n; j ++)
{
p = x0 + (j - 1) * h;
if(j != i) s = s * (t - p) / (q - p);
}
s = s * s;
p = 0.0;
for(j = 1; j <= n; j ++)
{
if(j != i)
{
p = p + 1.0 / (q - (x0 + (j - 1) * h));
}
}
q = y[i - 1] + (t - q) * (dy[i - 1] - 2.0 * y[i - 1] * p);
z = z + q * s;
}
return(z);
}
//埃特金不等距逐步插值
template <class _Ty>
_Ty InterpolationAitkenNotIsometry(valarray<_Ty>& x,
valarray<_Ty>& y, _Ty t, _Ty eps)
{
int i,j,k,m,l;
_Ty z(0), xx[10], yy[10];
int n = y.size(); //给定不等距结点的个数
if(n <1 ) return(z);
if(n == 1)
{
z = y[0];
return(z);
}
m = 10;
if(m > n) m = n;
if(t <= x[0]) k = 1;
else if(t >= x[n - 1]) k=n;
else
{
k = 1;
j = n;
while(((k - j) != 1) && ((k - j) != -1))
{
l = (k + j) / 2;
if(t < x[l - 1]) j = l;
else k = l;
}
if(Abs(t - x[l - 1]) > Abs (t - x[j - 1])) k = j;
}
j = 1;
l = 0;
for(i = 1; i <= m; i ++)
{
k = k + j * l;
if((k < 1) || (k > n))
{
l = l + 1;
j = -j;
k = k + j * l;
}
xx[i - 1] = x[k - 1];
yy[i - 1] = y[k - 1];
l = l + 1;
j = -j;
}
i = 0;
do
{
i = i + 1;
z = yy[i];
for(j = 0; j <= i - 1; j ++)
{
z = yy[j] + (t - xx[j]) * (yy[j] - z) / (xx[j] - xx[i]);
}
yy[i] = z;
}while((i != (m - 1)) && (Abs(yy[i] - yy[i - 1]) > eps));
return(z);
}
//埃特金等距逐步插值
template <class _Ty>
_Ty InterpolationAitkenIsometry(_Ty x, _Ty h,
valarray<_Ty>& y, _Ty t, _Ty eps)
{
int i, j, k, m, l;
_Ty z(0), xx[10], yy[10];
int n = y.size(); //给定等距结点的个数
if (n < 1)
return z;
if (n == 1)
{
z = y[0];
return z;
}
m = 10;
if (m > n)
m = n;
if (t <= x)
k = 1;
else
{
if (t >= (x + (n - 1) * h))
k = n;
else
{
k = 1;
j = n;
while ((k - j != 1) && (k - j != -1))
{
l = (k + j) / 2;
if (t < (x + (l - 1) * h))
j = l;
else
k = l;
}
if (Abs(t - (x + (l - 1) * h)) > Abs(t - (x + (j - 1) * h)))
k = j;
}
}
j = 1;
l = 0;
for (i = 1; i <= m; ++ i)
{
k = k + j * l;
if ((k < 1) || (k > n))
{
l = l + 1;
j = -j;
k = k + j * l;
}
xx[i - 1] = x + (k - 1) * h;
yy[i - 1] = y[k - 1];
l = l + 1;
j = -j;
}
i = 0;
do
{
i = i + 1;
z = yy[i];
for (j = 0; j <= i - 1; ++ j)
z = yy[j] + (t - xx[j]) * (yy[j] - z) / (xx[j] - xx[i]);
yy[i] = z;
}while ((i != m - 1) && (Abs(yy[i] - yy[i - 1]) > eps));
return z;
}
//光滑不等距插值
template <class _Ty>
void InterpolationSmoothNotIsometry(valarray<_Ty>& x, valarray<_Ty>& y,
int k, _Ty t, valarray<_Ty>& s)
{
int kk, m, l;
_Ty u[5], p, q;
int n = y.size(); //给定不等距结点的个数
for(m=0; m<5; m++) s[m] = 0.0;
if(n < 1) goto END;
if(n == 1)
{
s[0] = y[0];
s[4] = y[0];
goto END;
}
if(n == 2)
{
s[0] = y[0];
s[1] = (y[1] - y[0]) / (x[1] - x[0]);
if(k < 0)
{
s[4] = (y[0] * (t - x[1]) - y[1] * (t - x[0])) / (x[0] - x[1]);
}
goto END;
}
if(k < 0)
{
if(t <= x[1]) kk = 0;
else
if(t >= x[n - 1]) kk = n - 2;
else
{
kk = 1;
m = n;
while(((kk - m) != 1) && ((kk - m) != -1))
{
l = (kk + m) / 2;
if(t < x[l - 1]) m = l;
else kk = l;
}
kk = kk - 1;
}
}
else kk = k;
if(kk >= n-1) kk = n - 2;
u[2] = (y[kk + 1] - y[kk]) / (x[kk + 1] - x[kk]);
if(n == 3)
{
if(kk == 0)
{
u[3] = (y[2] - y[1]) / (x[2] - x[1]);
u[4] = 2.0 * u[3] - u[2];
u[1] = 2.0 * u[2] - u[3];
u[0] = 2.0 * u[1] - u[2];
}
else
{
u[1] = (y[1] - y[0]) / (x[1] - x[0]);
u[0] = 2.0 * u[1] - u[2];
u[3] = 2.0 * u[2] - u[1];
u[4] = 2.0 * u[3] - u[2];
}
}
else
{
if(kk <= 1)
{
u[3] = (y[kk + 2] - y[kk + 1]) / (x[kk + 2] - x[kk + 1]);
if(kk == 1)
{
u[1] = (y[1] - y[0]) / (x[1] - x[0]);
u[0] = 2.0 * u[1] - u[2];
if(n == 4) u[4] = 2.0 * u[3] - u[2];
else u[4] = (y[4] - y[3]) / (x[4] - x[3]);
}
else
{
u[1] = 2.0 * u[2] - u[3];
u[0] = 2.0 * u[1] - u[2];
u[4] = (y[3] - y[2]) / (x[3] - x[2]);
}
}
else if(kk >= (n - 3))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -