⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 b3soifdnoi.c

📁 ngspice又一个电子CAD仿真软件代码.功能更全
💻 C
字号:
/**********Copyright 1999 Regents of the University of California.  All rights reserved.Author: Weidong Liu and Pin Su         Feb 1999Author: 1998 Samuel Fung, Dennis Sinitsky and Stephen TangFile: b3soifdnoi.c          98/5/01Modified by Paolo Nenzi 2002**********//* * Revision 2.1  99/9/27 Pin Su  * BSIMFD2.1 release */#include "ngspice.h"#include "b3soifddef.h"#include "cktdefs.h"#include "iferrmsg.h"#include "noisedef.h"#include "suffix.h"#include "const.h"  /* jwan *//* * B3SOIFDnoise (mode, operation, firstModel, ckt, data, OnDens) *    This routine names and evaluates all of the noise sources *    associated with MOSFET's.  It starts with the model *firstModel and *    traverses all of its insts.  It then proceeds to any other models *    on the linked list.  The total output noise density generated by *    all of the MOSFET's is summed with the variable "OnDens". *//* Channel thermal and flicker noises are calculated based on the value of model->B3SOIFDnoiMod. If model->B3SOIFDnoiMod = 1,    Channel thermal noise = SPICE2 model    Flicker noise         = SPICE2 model If model->B3SOIFDnoiMod = 2,    Channel thermal noise = B3SOIFD model    Flicker noise         = B3SOIFD model If model->B3SOIFDnoiMod = 3,    Channel thermal noise = SPICE2 model    Flicker noise         = B3SOIFD model If model->B3SOIFDnoiMod = 4,    Channel thermal noise = B3SOIFD model    Flicker noise         = SPICE2 model */extern void   NevalSrc();extern double Nintegrate();doubleB3SOIFDStrongInversionNoiseEval(double vgs, double vds, B3SOIFDmodel *model,                                 B3SOIFDinstance *here, double freq, 				double temp){struct b3soifdSizeDependParam *pParam;double cd, esat, DelClm, EffFreq, N0, Nl, Vgst;double T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, Ssi;    pParam = here->pParam;    cd = fabs(here->B3SOIFDcd) * here->B3SOIFDm;    if (vds > here->B3SOIFDvdsat)    {   esat = 2.0 * pParam->B3SOIFDvsattemp / here->B3SOIFDueff;	T0 = ((((vds - here->B3SOIFDvdsat) / pParam->B3SOIFDlitl) + model->B3SOIFDem)	   / esat);        DelClm = pParam->B3SOIFDlitl * log (MAX(T0, N_MINLOG));    }    else         DelClm = 0.0;    EffFreq = pow(freq, model->B3SOIFDef);    T1 = CHARGE * CHARGE * 8.62e-5 * cd * temp * here->B3SOIFDueff;    T2 = 1.0e8 * EffFreq * model->B3SOIFDcox       * pParam->B3SOIFDleff * pParam->B3SOIFDleff;    Vgst = vgs - here->B3SOIFDvon;    N0 = model->B3SOIFDcox * Vgst / CHARGE;    if (N0 < 0.0)	N0 = 0.0;    Nl = model->B3SOIFDcox * (Vgst - MIN(vds, here->B3SOIFDvdsat)) / CHARGE;    if (Nl < 0.0)	Nl = 0.0;    T3 = model->B3SOIFDoxideTrapDensityA       * log(MAX(((N0 + 2.0e14) / (Nl + 2.0e14)), N_MINLOG));    T4 = model->B3SOIFDoxideTrapDensityB * (N0 - Nl);    T5 = model->B3SOIFDoxideTrapDensityC * 0.5 * (N0 * N0 - Nl * Nl);    T6 = 8.62e-5 * temp * cd * cd;    T7 = 1.0e8 * EffFreq * pParam->B3SOIFDleff       * pParam->B3SOIFDleff * pParam->B3SOIFDweff * here->B3SOIFDm;    T8 = model->B3SOIFDoxideTrapDensityA + model->B3SOIFDoxideTrapDensityB * Nl       + model->B3SOIFDoxideTrapDensityC * Nl * Nl;    T9 = (Nl + 2.0e14) * (Nl + 2.0e14);    Ssi = T1 / T2 * (T3 + T4 + T5) + T6 / T7 * DelClm * T8 / T9;    return Ssi;}intB3SOIFDnoise (int mode, int operation, GENmodel *inModel, CKTcircuit *ckt,               Ndata *data, double *OnDens){B3SOIFDmodel *model = (B3SOIFDmodel *)inModel;B3SOIFDinstance *here;struct b3soifdSizeDependParam *pParam;char name[N_MXVLNTH];double tempOnoise;double tempInoise;double noizDens[B3SOIFDNSRCS];double lnNdens[B3SOIFDNSRCS];double vgs, vds, Slimit;double T1, T10, T11;double Ssi, Swi;int i;    /* define the names of the noise sources */    static char *B3SOIFDnNames[B3SOIFDNSRCS] =    {   /* Note that we have to keep the order */	".rd",              /* noise due to rd */			    /* consistent with the index definitions */	".rs",              /* noise due to rs */			    /* in B3SOIFDdefs.h */	".id",              /* noise due to id */	".1overf",          /* flicker (1/f) noise */        ".fb", 		    /* noise due to floating body */	""                  /* total transistor noise */    };    for (; model != NULL; model = model->B3SOIFDnextModel)    {    for (here = model->B3SOIFDinstances; here != NULL;	      here = here->B3SOIFDnextInstance)	 {   	               if (here->B3SOIFDowner != ARCHme)	              continue;	 	      pParam = here->pParam;	      switch (operation)	      {  case N_OPEN:		     /* see if we have to to produce a summary report */		     /* if so, name all the noise generators */		      if (((NOISEAN*)ckt->CKTcurJob)->NStpsSm != 0)		      {   switch (mode)			  {  case N_DENS:			          for (i = 0; i < B3SOIFDNSRCS; i++)				  {    (void) sprintf(name, "onoise.%s%s",					              here->B3SOIFDname,						      B3SOIFDnNames[i]);                                       data->namelist = (IFuid *) trealloc(					     (char *) data->namelist,					     (data->numPlots + 1)					     * sizeof(IFuid));                                       if (!data->namelist)					   return(E_NOMEM);		                       (*(SPfrontEnd->IFnewUid)) (ckt,			                  &(data->namelist[data->numPlots++]),			                  (IFuid) NULL, name, UID_OTHER,					  (void **) NULL);				       /* we've added one more plot */			          }			          break;		             case INT_NOIZ:			          for (i = 0; i < B3SOIFDNSRCS; i++)				  {    (void) sprintf(name, "onoise_total.%s%s",						      here->B3SOIFDname,						      B3SOIFDnNames[i]);                                       data->namelist = (IFuid *) trealloc(					     (char *) data->namelist,					     (data->numPlots + 1)					     * sizeof(IFuid));                                       if (!data->namelist)					   return(E_NOMEM);		                       (*(SPfrontEnd->IFnewUid)) (ckt,			                  &(data->namelist[data->numPlots++]),			                  (IFuid) NULL, name, UID_OTHER,					  (void **) NULL);				       /* we've added one more plot */			               (void) sprintf(name, "inoise_total.%s%s",						      here->B3SOIFDname,						      B3SOIFDnNames[i]);                                       data->namelist = (IFuid *) trealloc(					     (char *) data->namelist,					     (data->numPlots + 1)					     * sizeof(IFuid));                                       if (!data->namelist)					   return(E_NOMEM);		                       (*(SPfrontEnd->IFnewUid)) (ckt,			                  &(data->namelist[data->numPlots++]),			                  (IFuid) NULL, name, UID_OTHER,					  (void **)NULL);				       /* we've added one more plot */			          }			          break;		          }		      }		      break;	         case N_CALC:		      switch (mode)		      {  case N_DENS:		              NevalSrc(&noizDens[B3SOIFDRDNOIZ],				       &lnNdens[B3SOIFDRDNOIZ], ckt, THERMNOISE,				       here->B3SOIFDdNodePrime, here->B3SOIFDdNode,				       here->B3SOIFDdrainConductance * here->B3SOIFDm);		              NevalSrc(&noizDens[B3SOIFDRSNOIZ],				       &lnNdens[B3SOIFDRSNOIZ], ckt, THERMNOISE,				       here->B3SOIFDsNodePrime, here->B3SOIFDsNode,				       here->B3SOIFDsourceConductance * here->B3SOIFDm);                              switch( model->B3SOIFDnoiMod )			      {  case 1:			         case 3:			              NevalSrc(&noizDens[B3SOIFDIDNOIZ],				               &lnNdens[B3SOIFDIDNOIZ], ckt, 					       THERMNOISE, here->B3SOIFDdNodePrime,				               here->B3SOIFDsNodePrime,                                               (2.0 / 3.0 * fabs(here->B3SOIFDm * 					       (here->B3SOIFDgm				               + here->B3SOIFDgds					       + here->B3SOIFDgmbs))));				      break;			         case 2:			         case 4:		                      NevalSrc(&noizDens[B3SOIFDIDNOIZ],				               &lnNdens[B3SOIFDIDNOIZ], ckt,					       THERMNOISE, here->B3SOIFDdNodePrime,                                               here->B3SOIFDsNodePrime,					       (here->B3SOIFDueff					       * fabs((here->B3SOIFDqinv * here->B3SOIFDm)					       / (pParam->B3SOIFDleff					       * pParam->B3SOIFDleff))));				      break;			      }		              NevalSrc(&noizDens[B3SOIFDFLNOIZ], (double*) NULL,				       ckt, N_GAIN, here->B3SOIFDdNodePrime,				       here->B3SOIFDsNodePrime, (double) 0.0);                              switch( model->B3SOIFDnoiMod )			      {  case 1:			         case 4:			              noizDens[B3SOIFDFLNOIZ] *= model->B3SOIFDkf					    * exp(model->B3SOIFDaf					    * log(MAX(fabs(here->B3SOIFDcd * here->B3SOIFDm),					    N_MINLOG)))					    / (pow(data->freq, model->B3SOIFDef)					    * pParam->B3SOIFDleff				            * pParam->B3SOIFDleff					    * model->B3SOIFDcox);				      break;			         case 2:			         case 3:			              vgs = *(ckt->CKTstates[0] + here->B3SOIFDvgs);		                      vds = *(ckt->CKTstates[0] + here->B3SOIFDvds);			              if (vds < 0.0)			              {   vds = -vds;				          vgs = vgs + vds;			              }                                      if (vgs >= here->B3SOIFDvon + 0.1)			              {   Ssi = B3SOIFDStrongInversionNoiseEval(vgs,					      vds, model, here, data->freq,					      ckt->CKTtemp);                                          noizDens[B3SOIFDFLNOIZ] *= Ssi;			              }                                      else 			              {   pParam = here->pParam;				          T10 = model->B3SOIFDoxideTrapDensityA					      * 8.62e-5 * ckt->CKTtemp;		                          T11 = pParam->B3SOIFDweff * here->B3SOIFDm					      * pParam->B3SOIFDleff				              * pow(data->freq, model->B3SOIFDef)				              * 4.0e36;		                          Swi = T10 / T11 * here->B3SOIFDcd * here->B3SOIFDm				              * here->B3SOIFDcd * here->B3SOIFDm;                                          Slimit = B3SOIFDStrongInversionNoiseEval(				               here->B3SOIFDvon + 0.1, vds, model,					       here, data->freq, ckt->CKTtemp);				          T1 = Swi + Slimit;				          if (T1 > 0.0)                                              noizDens[B3SOIFDFLNOIZ] *= (Slimit								    * Swi) / T1; 				          else                                              noizDens[B3SOIFDFLNOIZ] *= 0.0;			              }				      break;			      }		              lnNdens[B3SOIFDFLNOIZ] =				     log(MAX(noizDens[B3SOIFDFLNOIZ], N_MINLOG));			      /* Low frequency excess noise due to FBE */                              noizDens[B3SOIFDFBNOIZ] = 0.0;		              noizDens[B3SOIFDTOTNOIZ] = noizDens[B3SOIFDRDNOIZ]						     + noizDens[B3SOIFDRSNOIZ]						     + noizDens[B3SOIFDIDNOIZ]						     + noizDens[B3SOIFDFLNOIZ]						     + noizDens[B3SOIFDFBNOIZ];		              lnNdens[B3SOIFDTOTNOIZ] = 				     log(MAX(noizDens[B3SOIFDTOTNOIZ], N_MINLOG));		              *OnDens += noizDens[B3SOIFDTOTNOIZ];		              if (data->delFreq == 0.0)			      {   /* if we haven't done any previous 				     integration, we need to initialize our				     "history" variables.				    */			          for (i = 0; i < B3SOIFDNSRCS; i++)				  {    here->B3SOIFDnVar[LNLSTDENS][i] =					     lnNdens[i];			          }			          /* clear out our integration variables				     if it's the first pass				   */			          if (data->freq ==				      ((NOISEAN*) ckt->CKTcurJob)->NstartFreq)				  {   for (i = 0; i < B3SOIFDNSRCS; i++)				      {    here->B3SOIFDnVar[OUTNOIZ][i] = 0.0;				           here->B3SOIFDnVar[INNOIZ][i] = 0.0;			              }			          }		              }			      else			      {   /* data->delFreq != 0.0,				     we have to integrate.				   */			          for (i = 0; i < B3SOIFDNSRCS; i++)				  {    if (i != B3SOIFDTOTNOIZ)				       {   tempOnoise = Nintegrate(noizDens[i],						lnNdens[i],				                here->B3SOIFDnVar[LNLSTDENS][i],						data);				           tempInoise = Nintegrate(noizDens[i]						* data->GainSqInv, lnNdens[i]						+ data->lnGainInv,				                here->B3SOIFDnVar[LNLSTDENS][i]						+ data->lnGainInv, data);				           here->B3SOIFDnVar[LNLSTDENS][i] =						lnNdens[i];				           data->outNoiz += tempOnoise;				           data->inNoise += tempInoise;				           if (((NOISEAN*)					       ckt->CKTcurJob)->NStpsSm != 0)					   {   here->B3SOIFDnVar[OUTNOIZ][i]						     += tempOnoise;				               here->B3SOIFDnVar[OUTNOIZ][B3SOIFDTOTNOIZ]						     += tempOnoise;				               here->B3SOIFDnVar[INNOIZ][i]						     += tempInoise;				               here->B3SOIFDnVar[INNOIZ][B3SOIFDTOTNOIZ]						     += tempInoise;                                           }			               }			          }		              }		              if (data->prtSummary)			      {   for (i = 0; i < B3SOIFDNSRCS; i++)				  {    /* print a summary report */			               data->outpVector[data->outNumber++]					     = noizDens[i];			          }		              }		              break;		         case INT_NOIZ:			      /* already calculated, just output */		              if (((NOISEAN*)ckt->CKTcurJob)->NStpsSm != 0)			      {   for (i = 0; i < B3SOIFDNSRCS; i++)				  {    data->outpVector[data->outNumber++]					     = here->B3SOIFDnVar[OUTNOIZ][i];			               data->outpVector[data->outNumber++]					     = here->B3SOIFDnVar[INNOIZ][i];			          }		              }		              break;		      }		      break;	         case N_CLOSE:		      /* do nothing, the main calling routine will close */		      return (OK);		      break;   /* the plots */	      }       /* switch (operation) */	 }    /* for here */    }    /* for model */    return(OK);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -