📄 b3soiddnoi.c
字号:
/**********Copyright 1999 Regents of the University of California. All rights reserved.Author: Weidong Liu and Pin Su Feb 1999Author: 1998 Samuel Fung, Dennis Sinitsky and Stephen TangFile: b3soiddnoi.c 98/5/01Modofied by Paolo Nenzi 2002**********//* * Revision 2.1 99/9/27 Pin Su * BSIMDD2.1 release */#include "ngspice.h"#include "b3soidddef.h"#include "cktdefs.h"#include "iferrmsg.h"#include "noisedef.h"#include "suffix.h"#include "const.h" /* jwan *//* * B3SOIDDnoise (mode, operation, firstModel, ckt, data, OnDens) * This routine names and evaluates all of the noise sources * associated with MOSFET's. It starts with the model *firstModel and * traverses all of its insts. It then proceeds to any other models * on the linked list. The total output noise density generated by * all of the MOSFET's is summed with the variable "OnDens". *//* Channel thermal and flicker noises are calculated based on the value of model->B3SOIDDnoiMod. If model->B3SOIDDnoiMod = 1, Channel thermal noise = SPICE2 model Flicker noise = SPICE2 model If model->B3SOIDDnoiMod = 2, Channel thermal noise = B3SOIDD model Flicker noise = B3SOIDD model If model->B3SOIDDnoiMod = 3, Channel thermal noise = SPICE2 model Flicker noise = B3SOIDD model If model->B3SOIDDnoiMod = 4, Channel thermal noise = B3SOIDD model Flicker noise = SPICE2 model */extern void NevalSrc();extern double Nintegrate();doubleB3SOIDDStrongInversionNoiseEval(double vgs, double vds, B3SOIDDmodel *model, B3SOIDDinstance *here, double freq, double temp){struct b3soiddSizeDependParam *pParam;double cd, esat, DelClm, EffFreq, N0, Nl, Vgst;double T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, Ssi; pParam = here->pParam; cd = fabs(here->B3SOIDDcd) * here->B3SOIDDm; if (vds > here->B3SOIDDvdsat) { esat = 2.0 * pParam->B3SOIDDvsattemp / here->B3SOIDDueff; T0 = ((((vds - here->B3SOIDDvdsat) / pParam->B3SOIDDlitl) + model->B3SOIDDem) / esat); DelClm = pParam->B3SOIDDlitl * log (MAX(T0, N_MINLOG)); } else DelClm = 0.0; EffFreq = pow(freq, model->B3SOIDDef); T1 = CHARGE * CHARGE * 8.62e-5 * cd * temp * here->B3SOIDDueff; T2 = 1.0e8 * EffFreq * model->B3SOIDDcox * pParam->B3SOIDDleff * pParam->B3SOIDDleff; Vgst = vgs - here->B3SOIDDvon; N0 = model->B3SOIDDcox * Vgst / CHARGE; if (N0 < 0.0) N0 = 0.0; Nl = model->B3SOIDDcox * (Vgst - MIN(vds, here->B3SOIDDvdsat)) / CHARGE; if (Nl < 0.0) Nl = 0.0; T3 = model->B3SOIDDoxideTrapDensityA * log(MAX(((N0 + 2.0e14) / (Nl + 2.0e14)), N_MINLOG)); T4 = model->B3SOIDDoxideTrapDensityB * (N0 - Nl); T5 = model->B3SOIDDoxideTrapDensityC * 0.5 * (N0 * N0 - Nl * Nl); T6 = 8.62e-5 * temp * cd * cd; T7 = 1.0e8 * EffFreq * pParam->B3SOIDDleff * pParam->B3SOIDDleff * pParam->B3SOIDDweff * here->B3SOIDDm; T8 = model->B3SOIDDoxideTrapDensityA + model->B3SOIDDoxideTrapDensityB * Nl + model->B3SOIDDoxideTrapDensityC * Nl * Nl; T9 = (Nl + 2.0e14) * (Nl + 2.0e14); Ssi = T1 / T2 * (T3 + T4 + T5) + T6 / T7 * DelClm * T8 / T9; return Ssi;}intB3SOIDDnoise (int mode, int operation, GENmodel *inModel, CKTcircuit *ckt, Ndata *data, double *OnDens){B3SOIDDmodel *model = (B3SOIDDmodel *)inModel;B3SOIDDinstance *here;struct b3soiddSizeDependParam *pParam;char name[N_MXVLNTH];double tempOnoise;double tempInoise;double noizDens[B3SOIDDNSRCS];double lnNdens[B3SOIDDNSRCS];double vgs, vds, Slimit;double T1, T10, T11;double Ssi, Swi;int i; /* define the names of the noise sources */ static char *B3SOIDDnNames[B3SOIDDNSRCS] = { /* Note that we have to keep the order */ ".rd", /* noise due to rd */ /* consistent with the index definitions */ ".rs", /* noise due to rs */ /* in B3SOIDDdefs.h */ ".id", /* noise due to id */ ".1overf", /* flicker (1/f) noise */ ".fb", /* noise due to floating body */ "" /* total transistor noise */ }; for (; model != NULL; model = model->B3SOIDDnextModel) { for (here = model->B3SOIDDinstances; here != NULL; here = here->B3SOIDDnextInstance) { if (here->B3SOIDDowner != ARCHme) continue; pParam = here->pParam; switch (operation) { case N_OPEN: /* see if we have to to produce a summary report */ /* if so, name all the noise generators */ if (((NOISEAN*)ckt->CKTcurJob)->NStpsSm != 0) { switch (mode) { case N_DENS: for (i = 0; i < B3SOIDDNSRCS; i++) { (void) sprintf(name, "onoise.%s%s", here->B3SOIDDname, B3SOIDDnNames[i]); data->namelist = (IFuid *) trealloc( (char *) data->namelist, (data->numPlots + 1) * sizeof(IFuid)); if (!data->namelist) return(E_NOMEM); (*(SPfrontEnd->IFnewUid)) (ckt, &(data->namelist[data->numPlots++]), (IFuid) NULL, name, UID_OTHER, (void **) NULL); /* we've added one more plot */ } break; case INT_NOIZ: for (i = 0; i < B3SOIDDNSRCS; i++) { (void) sprintf(name, "onoise_total.%s%s", here->B3SOIDDname, B3SOIDDnNames[i]); data->namelist = (IFuid *) trealloc( (char *) data->namelist, (data->numPlots + 1) * sizeof(IFuid)); if (!data->namelist) return(E_NOMEM); (*(SPfrontEnd->IFnewUid)) (ckt, &(data->namelist[data->numPlots++]), (IFuid) NULL, name, UID_OTHER, (void **) NULL); /* we've added one more plot */ (void) sprintf(name, "inoise_total.%s%s", here->B3SOIDDname, B3SOIDDnNames[i]); data->namelist = (IFuid *) trealloc( (char *) data->namelist, (data->numPlots + 1) * sizeof(IFuid)); if (!data->namelist) return(E_NOMEM); (*(SPfrontEnd->IFnewUid)) (ckt, &(data->namelist[data->numPlots++]), (IFuid) NULL, name, UID_OTHER, (void **)NULL); /* we've added one more plot */ } break; } } break; case N_CALC: switch (mode) { case N_DENS: NevalSrc(&noizDens[B3SOIDDRDNOIZ], &lnNdens[B3SOIDDRDNOIZ], ckt, THERMNOISE, here->B3SOIDDdNodePrime, here->B3SOIDDdNode, here->B3SOIDDdrainConductance * here->B3SOIDDm); NevalSrc(&noizDens[B3SOIDDRSNOIZ], &lnNdens[B3SOIDDRSNOIZ], ckt, THERMNOISE, here->B3SOIDDsNodePrime, here->B3SOIDDsNode, here->B3SOIDDsourceConductance * here->B3SOIDDm); switch( model->B3SOIDDnoiMod ) { case 1: case 3: NevalSrc(&noizDens[B3SOIDDIDNOIZ], &lnNdens[B3SOIDDIDNOIZ], ckt, THERMNOISE, here->B3SOIDDdNodePrime, here->B3SOIDDsNodePrime, (2.0 / 3.0 * fabs(here->B3SOIDDm * (here->B3SOIDDgm + here->B3SOIDDgds + here->B3SOIDDgmbs)))); break; case 2: case 4: NevalSrc(&noizDens[B3SOIDDIDNOIZ], &lnNdens[B3SOIDDIDNOIZ], ckt, THERMNOISE, here->B3SOIDDdNodePrime, here->B3SOIDDsNodePrime, (here->B3SOIDDueff * fabs((here->B3SOIDDqinv * here->B3SOIDDm) / (pParam->B3SOIDDleff * pParam->B3SOIDDleff)))); break; } NevalSrc(&noizDens[B3SOIDDFLNOIZ], (double*) NULL, ckt, N_GAIN, here->B3SOIDDdNodePrime, here->B3SOIDDsNodePrime, (double) 0.0); switch( model->B3SOIDDnoiMod ) { case 1: case 4: noizDens[B3SOIDDFLNOIZ] *= model->B3SOIDDkf * exp(model->B3SOIDDaf * log(MAX(fabs(here->B3SOIDDcd * here->B3SOIDDm), N_MINLOG))) / (pow(data->freq, model->B3SOIDDef) * pParam->B3SOIDDleff * pParam->B3SOIDDleff * model->B3SOIDDcox); break; case 2: case 3: vgs = *(ckt->CKTstates[0] + here->B3SOIDDvgs); vds = *(ckt->CKTstates[0] + here->B3SOIDDvds); if (vds < 0.0) { vds = -vds; vgs = vgs + vds; } if (vgs >= here->B3SOIDDvon + 0.1) { Ssi = B3SOIDDStrongInversionNoiseEval(vgs, vds, model, here, data->freq, ckt->CKTtemp); noizDens[B3SOIDDFLNOIZ] *= Ssi; } else { pParam = here->pParam; T10 = model->B3SOIDDoxideTrapDensityA * 8.62e-5 * ckt->CKTtemp; T11 = pParam->B3SOIDDweff * here->B3SOIDDm * pParam->B3SOIDDleff * pow(data->freq, model->B3SOIDDef) * 4.0e36; Swi = T10 / T11 * here->B3SOIDDcd * here->B3SOIDDm * here->B3SOIDDcd * here->B3SOIDDm; Slimit = B3SOIDDStrongInversionNoiseEval( here->B3SOIDDvon + 0.1, vds, model, here, data->freq, ckt->CKTtemp); T1 = Swi + Slimit; if (T1 > 0.0) noizDens[B3SOIDDFLNOIZ] *= (Slimit * Swi) / T1; else noizDens[B3SOIDDFLNOIZ] *= 0.0; } break; } lnNdens[B3SOIDDFLNOIZ] = log(MAX(noizDens[B3SOIDDFLNOIZ], N_MINLOG)); /* Low frequency excess noise due to FBE */ NevalSrc(&noizDens[B3SOIDDFBNOIZ], &lnNdens[B3SOIDDFBNOIZ], ckt, SHOTNOISE, here->B3SOIDDsNodePrime, here->B3SOIDDbNode, 2.0 * model->B3SOIDDnoif * here->B3SOIDDibs * here->B3SOIDDm); noizDens[B3SOIDDTOTNOIZ] = noizDens[B3SOIDDRDNOIZ] + noizDens[B3SOIDDRSNOIZ] + noizDens[B3SOIDDIDNOIZ] + noizDens[B3SOIDDFLNOIZ] + noizDens[B3SOIDDFBNOIZ]; lnNdens[B3SOIDDTOTNOIZ] = log(MAX(noizDens[B3SOIDDTOTNOIZ], N_MINLOG)); *OnDens += noizDens[B3SOIDDTOTNOIZ]; if (data->delFreq == 0.0) { /* if we haven't done any previous integration, we need to initialize our "history" variables. */ for (i = 0; i < B3SOIDDNSRCS; i++) { here->B3SOIDDnVar[LNLSTDENS][i] = lnNdens[i]; } /* clear out our integration variables if it's the first pass */ if (data->freq == ((NOISEAN*) ckt->CKTcurJob)->NstartFreq) { for (i = 0; i < B3SOIDDNSRCS; i++) { here->B3SOIDDnVar[OUTNOIZ][i] = 0.0; here->B3SOIDDnVar[INNOIZ][i] = 0.0; } } } else { /* data->delFreq != 0.0, we have to integrate. */ for (i = 0; i < B3SOIDDNSRCS; i++) { if (i != B3SOIDDTOTNOIZ) { tempOnoise = Nintegrate(noizDens[i], lnNdens[i], here->B3SOIDDnVar[LNLSTDENS][i], data); tempInoise = Nintegrate(noizDens[i] * data->GainSqInv, lnNdens[i] + data->lnGainInv, here->B3SOIDDnVar[LNLSTDENS][i] + data->lnGainInv, data); here->B3SOIDDnVar[LNLSTDENS][i] = lnNdens[i]; data->outNoiz += tempOnoise; data->inNoise += tempInoise; if (((NOISEAN*) ckt->CKTcurJob)->NStpsSm != 0) { here->B3SOIDDnVar[OUTNOIZ][i] += tempOnoise; here->B3SOIDDnVar[OUTNOIZ][B3SOIDDTOTNOIZ] += tempOnoise; here->B3SOIDDnVar[INNOIZ][i] += tempInoise; here->B3SOIDDnVar[INNOIZ][B3SOIDDTOTNOIZ] += tempInoise; } } } } if (data->prtSummary) { for (i = 0; i < B3SOIDDNSRCS; i++) { /* print a summary report */ data->outpVector[data->outNumber++] = noizDens[i]; } } break; case INT_NOIZ: /* already calculated, just output */ if (((NOISEAN*)ckt->CKTcurJob)->NStpsSm != 0) { for (i = 0; i < B3SOIDDNSRCS; i++) { data->outpVector[data->outNumber++] = here->B3SOIDDnVar[OUTNOIZ][i]; data->outpVector[data->outNumber++] = here->B3SOIDDnVar[INNOIZ][i]; } } break; } break; case N_CLOSE: /* do nothing, the main calling routine will close */ return (OK); break; /* the plots */ } /* switch (operation) */ } /* for here */ } /* for model */ return(OK);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -