📄 b3soiddld.c
字号:
delTemp =B3SOIDDlimit(delTemp, *(ckt->CKTstate0 + here->B3SOIDDdeltemp),5.0,&Check); }/* Calculate temperature dependent values for self-heating effect */ Temp = delTemp + ckt->CKTtemp;/* for debugging Temp = ckt->CKTtemp; selfheat = 1; if (here->B3SOIDDname[1] == '2') { Temp += 0.01; } */ TempRatio = Temp / model->B3SOIDDtnom; if (selfheat) { Vtm = KboQ * Temp; T0 = 1108.0 + Temp; T5 = Temp * Temp; Eg = 1.16 - 7.02e-4 * T5 / T0; T1 = ((7.02e-4 * T5) - T0 * (14.04e-4 * Temp)) / T0 / T0; /* T1 = dEg / dT */ T2 = 1.9230584e-4; /* T2 = 1 / 300.15^(3/2) */ T5 = sqrt(Temp); T3 = 1.45e10 * Temp * T5 * T2; T4 = exp(21.5565981 - Eg / (2.0 * Vtm)); ni = T3 * T4; dni_dT = 2.175e10 * T2 * T5 * T4 + T3 * T4 * (-Vtm * T1 + Eg * KboQ) / (2.0 * Vtm * Vtm); T0 = log(1.0e20 * pParam->B3SOIDDnpeak / (ni * ni)); vbi = Vtm * T0; dvbi_dT = KboQ * T0 + Vtm * (-2.0 * dni_dT / ni); if (pParam->B3SOIDDnsub > 0) { T0 = log(pParam->B3SOIDDnpeak / pParam->B3SOIDDnsub); vfbb = -model->B3SOIDDtype * Vtm*T0; dvfbb_dT = -model->B3SOIDDtype * KboQ*T0; } else { T0 = log(-pParam->B3SOIDDnpeak*pParam->B3SOIDDnsub/ni/ni); vfbb = -model->B3SOIDDtype * Vtm*T0; dvfbb_dT = -model->B3SOIDDtype * (KboQ * T0 + Vtm * 2.0 * dni_dT / ni); }/* phi = 2.0 * Vtm * log(pParam->B3SOIDDnpeak / ni); */ phi = here->B3SOIDDphi; sqrtPhi = sqrt(phi); Xdep0 = sqrt(2.0 * EPSSI / (Charge_q * pParam->B3SOIDDnpeak * 1.0e6)) * sqrtPhi; /* Save the values below for phi calculation in B3SOIDDaccept() */ here->B3SOIDDvtm = Vtm; here->B3SOIDDni = ni; /* Use dTx_dVe variables to act as dTx_dT variables */ T8 = 1 / model->B3SOIDDtnom; T7 = model->B3SOIDDxbjt / pParam->B3SOIDDndiode; T0 = pow(TempRatio, T7); dT0_dVe = T7 * pow(TempRatio, T7 - 1.0) * T8; T7 = model->B3SOIDDxdif / pParam->B3SOIDDndiode; T1 = pow(TempRatio, T7); dT1_dVe = T7 * pow(TempRatio, T7 - 1.0) * T8; T7 = model->B3SOIDDxrec / pParam->B3SOIDDndiode / 2.0; T2 = pow(TempRatio, T7); dT2_dVe = T7 * pow(TempRatio, T7 - 1.0) * T8; T3 = TempRatio - 1.0; T4 = Eg300 / pParam->B3SOIDDndiode / Vtm * T3; dT4_dVe = Eg300 / pParam->B3SOIDDndiode / Vtm / Vtm * (Vtm * T8 - T3 * KboQ); T5 = exp(T4); dT5_dVe = dT4_dVe * T5; T6 = sqrt(T5); dT6_dVe = 0.5 / T6 * dT5_dVe; jbjt = pParam->B3SOIDDisbjt * T0 * T5; jdif = pParam->B3SOIDDisdif * T1 * T5; jrec = pParam->B3SOIDDisrec * T2 * T6; djbjt_dT = pParam->B3SOIDDisbjt * (T0 * dT5_dVe + T5 * dT0_dVe); djdif_dT = pParam->B3SOIDDisdif * (T1 * dT5_dVe + T5 * dT1_dVe); djrec_dT = pParam->B3SOIDDisrec * (T2 * dT6_dVe + T6 * dT2_dVe); T7 = model->B3SOIDDxtun / pParam->B3SOIDDntun; T0 = pow(TempRatio, T7); jtun = model->B3SOIDDistun * T0; djtun_dT = model->B3SOIDDistun * T7 * pow(TempRatio, T7 - 1.0) * T8; u0temp = pParam->B3SOIDDu0 * pow(TempRatio, pParam->B3SOIDDute); du0temp_dT = pParam->B3SOIDDu0 * pParam->B3SOIDDute * pow(TempRatio, pParam->B3SOIDDute - 1.0) * T8; vsattemp = pParam->B3SOIDDvsat - pParam->B3SOIDDat * T3; dvsattemp_dT = -pParam->B3SOIDDat * T8; rds0 = (pParam->B3SOIDDrdsw + pParam->B3SOIDDprt * T3) / pParam->B3SOIDDrds0denom; drds0_dT = pParam->B3SOIDDprt / pParam->B3SOIDDrds0denom * T8; ua = pParam->B3SOIDDuatemp + pParam->B3SOIDDua1 * T3; ub = pParam->B3SOIDDubtemp + pParam->B3SOIDDub1 * T3; uc = pParam->B3SOIDDuctemp + pParam->B3SOIDDuc1 * T3; dua_dT = pParam->B3SOIDDua1 * T8; dub_dT = pParam->B3SOIDDub1 * T8; duc_dT = pParam->B3SOIDDuc1 * T8; } else { vbi = pParam->B3SOIDDvbi; vfbb = pParam->B3SOIDDvfbb; phi = pParam->B3SOIDDphi; sqrtPhi = pParam->B3SOIDDsqrtPhi; Xdep0 = pParam->B3SOIDDXdep0; jbjt = pParam->B3SOIDDjbjt; jdif = pParam->B3SOIDDjdif; jrec = pParam->B3SOIDDjrec; jtun = pParam->B3SOIDDjtun; u0temp = pParam->B3SOIDDu0temp; vsattemp = pParam->B3SOIDDvsattemp; rds0 = pParam->B3SOIDDrds0; ua = pParam->B3SOIDDua; ub = pParam->B3SOIDDub; uc = pParam->B3SOIDDuc; dni_dT = dvbi_dT = dvfbb_dT = djbjt_dT = djdif_dT = 0.0; djrec_dT = djtun_dT = du0temp_dT = dvsattemp_dT = 0.0; drds0_dT = dua_dT = dub_dT = duc_dT = 0.0; } /* TempRatio used for Vth and mobility */ if (selfheat) { TempRatio = Temp / model->B3SOIDDtnom - 1.0; } else { TempRatio = ckt->CKTtemp / model->B3SOIDDtnom - 1.0; } /* determine DC current and derivatives */ vbd = vbs - vds; vgd = vgs - vds; vgb = vgs - vbs; ved = ves - vds; veb = ves - vbs; vge = vgs - ves; vpd = vps - vds; if (vds >= 0.0) { /* normal mode */ here->B3SOIDDmode = 1; Vds = vds; Vgs = vgs; Vbs = vbs; Vbd = vbd; Ves = ves; Vps = vps; } else { /* inverse mode */ here->B3SOIDDmode = -1; Vds = -vds; Vgs = vgd; Vbs = vbd; Vbd = vbs; Ves = ved; Vps = vpd; } if (here->B3SOIDDdebugMod > 2) { fprintf(fpdebug, "Vgs=%.4f, Vds=%.4f, Vbs=%.4f, ", Vgs, Vds, Vbs); fprintf(fpdebug, "Ves=%.4f, Vps=%.4f, Temp=%.1f\n", Ves, Vps, Temp); } Vesfb = Ves - vfbb; Cbox = model->B3SOIDDcbox; K1 = pParam->B3SOIDDk1; ChargeComputationNeeded = ((ckt->CKTmode & (MODEAC | MODETRAN | MODEINITSMSIG)) || ((ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC))) ? 1 : 0; if (here->B3SOIDDdebugMod == -1) ChargeComputationNeeded = 1; /* Poly Gate Si Depletion Effect */ T0 = pParam->B3SOIDDvfb + phi; if ((pParam->B3SOIDDngate > 1.e18) && (pParam->B3SOIDDngate < 1.e25) && (Vgs > T0)) /* added to avoid the problem caused by ngate */ { T1 = 1.0e6 * Charge_q * EPSSI * pParam->B3SOIDDngate / (model->B3SOIDDcox * model->B3SOIDDcox); T4 = sqrt(1.0 + 2.0 * (Vgs - T0) / T1); T2 = T1 * (T4 - 1.0); T3 = 0.5 * T2 * T2 / T1; /* T3 = Vpoly */ T7 = 1.12 - T3 - 0.05; T6 = sqrt(T7 * T7 + 0.224); T5 = 1.12 - 0.5 * (T7 + T6); Vgs_eff = Vgs - T5; dVgs_eff_dVg = 1.0 - (0.5 - 0.5 / T4) * (1.0 + T7 / T6); } else { Vgs_eff = Vgs; dVgs_eff_dVg = 1.0; } Leff = pParam->B3SOIDDleff; if (selfheat) { Vtm = KboQ * Temp; dVtm_dT = KboQ; } else { Vtm = model->B3SOIDDvtm; dVtm_dT = 0.0; } V0 = vbi - phi;/* Prepare Vbs0t */ T0 = -pParam->B3SOIDDdvbd1 * pParam->B3SOIDDleff / pParam->B3SOIDDlitl; T1 = pParam->B3SOIDDdvbd0 * (exp(0.5*T0) + 2*exp(T0)); T2 = T1 * (vbi - phi); T3 = 0.5 * model->B3SOIDDqsi / model->B3SOIDDcsi; Vbs0t = phi - T3 + pParam->B3SOIDDvbsa + T2; if (selfheat) dVbs0t_dT = T1 * dvbi_dT; else dVbs0t_dT = 0.0;/* Prepare Vbs0 */ T0 = 1 + model->B3SOIDDcsieff / Cbox; T1 = pParam->B3SOIDDkb1 / T0; T2 = T1 * (Vbs0t - Vesfb); /* T6 is Vbs0 before limiting */ T6 = Vbs0t - T2; dT6_dVe = T1; if (selfheat) dT6_dT = dVbs0t_dT - T1 * (dVbs0t_dT + dvfbb_dT); else dT6_dT = 0.0; /* limit Vbs0 to below phi */ T1 = phi - pParam->B3SOIDDdelp; T2 = T1 - T6 - DELT_Vbseff; T3 = sqrt(T2 * T2 + 4.0 * DELT_Vbseff); Vbs0 = T1 - 0.5 * (T2 + T3); T4 = 0.5 * (1 + T2/T3); dVbs0_dVe = T4 * dT6_dVe; if (selfheat) dVbs0_dT = T4 * dT6_dT; else dVbs0_dT = 0.0; T1 = Vbs0t - Vbs0 - DELT_Vbsmos; T2 = sqrt(T1 * T1 + DELT_Vbsmos * DELT_Vbsmos); T3 = 0.5 * (T1 + T2); T4 = T3 * model->B3SOIDDcsieff / model->B3SOIDDqsieff; Vbs0mos = Vbs0 - 0.5 * T3 * T4; T5 = 0.5 * T4 * (1 + T1 / T2); dVbs0mos_dVe = dVbs0_dVe * (1 + T5); if (selfheat) dVbs0mos_dT = dVbs0_dT - (dVbs0t_dT - dVbs0_dT) * T5; else dVbs0mos_dT = 0.0;/* Prepare Vthfd - treat Vbs0mos as if it were independent variable Vb */ Phis = phi - Vbs0mos; dPhis_dVb = -1; sqrtPhis = sqrt(Phis); dsqrtPhis_dVb = -0.5 / sqrtPhis; Xdep = Xdep0 * sqrtPhis / sqrtPhi; dXdep_dVb = (Xdep0 / sqrtPhi) * dsqrtPhis_dVb; sqrtXdep = sqrt(Xdep); T0 = pParam->B3SOIDDdvt2 * Vbs0mos; if (T0 >= - 0.5) { T1 = 1.0 + T0; T2 = pParam->B3SOIDDdvt2; } else /* Added to avoid any discontinuity problems caused by dvt2*/ { T4 = 1.0 / (3.0 + 8.0 * T0); T1 = (1.0 + 3.0 * T0) * T4; T2 = pParam->B3SOIDDdvt2 * T4 * T4; } lt1 = model->B3SOIDDfactor1 * sqrtXdep * T1; dlt1_dVb = model->B3SOIDDfactor1 * (0.5 / sqrtXdep * T1 * dXdep_dVb + sqrtXdep * T2); T0 = pParam->B3SOIDDdvt2w * Vbs0mos; if (T0 >= - 0.5) { T1 = 1.0 + T0; T2 = pParam->B3SOIDDdvt2w; } else /* Added to avoid any discontinuity problems caused by dvt2w */ { T4 = 1.0 / (3.0 + 8.0 * T0); T1 = (1.0 + 3.0 * T0) * T4; T2 = pParam->B3SOIDDdvt2w * T4 * T4; } ltw= model->B3SOIDDfactor1 * sqrtXdep * T1; dltw_dVb = model->B3SOIDDfactor1 * (0.5 / sqrtXdep * T1 * dXdep_dVb + sqrtXdep * T2); T0 = -0.5 * pParam->B3SOIDDdvt1 * Leff / lt1; if (T0 > -EXP_THRESHOLD) { T1 = exp(T0); dT1_dVb = -T0 / lt1 * T1 * dlt1_dVb; Theta0 = T1 * (1.0 + 2.0 * T1); dTheta0_dVb = (1.0 + 4.0 * T1) * dT1_dVb; } else { T1 = MIN_EXP; Theta0 = T1 * (1.0 + 2.0 * T1); dTheta0_dVb = 0.0; } here->B3SOIDDthetavth = pParam->B3SOIDDdvt0 * Theta0; Delt_vth = here->B3SOIDDthetavth * V0; dDelt_vth_dVb = pParam->B3SOIDDdvt0 * dTheta0_dVb * V0; if (selfheat) dDelt_vth_dT = here->B3SOIDDthetavth * dvbi_dT; else dDelt_vth_dT = 0.0; T0 = -0.5*pParam->B3SOIDDdvt1w * pParam->B3SOIDDweff*Leff/ltw; if (T0 > -EXP_THRESHOLD) { T1 = exp(T0); T2 = T1 * (1.0 + 2.0 * T1); dT1_dVb = -T0 / ltw * T1 * dltw_dVb; dT2_dVb = (1.0 + 4.0 * T1) * dT1_dVb; } else { T1 = MIN_EXP;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -