⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 b3soiddld.c

📁 ngspice又一个电子CAD仿真软件代码.功能更全
💻 C
📖 第 1 页 / 共 5 页
字号:
		       delTemp =B3SOIDDlimit(delTemp, *(ckt->CKTstate0 + here->B3SOIDDdeltemp),5.0,&Check);                  }/*  Calculate temperature dependent values for self-heating effect  */		  Temp = delTemp + ckt->CKTtemp;/* for debugging    Temp = ckt->CKTtemp;  selfheat = 1;  if (here->B3SOIDDname[1] == '2')  {     Temp += 0.01;   } */		  TempRatio = Temp / model->B3SOIDDtnom;		  if (selfheat) {		      Vtm = KboQ * Temp;                      T0 = 1108.0 + Temp;		      T5 = Temp * Temp;		      Eg = 1.16 - 7.02e-4 * T5 / T0;		      T1 = ((7.02e-4 * T5) - T0 * (14.04e-4 * Temp)) / T0 / T0;                      /*  T1 = dEg / dT  */                      T2 = 1.9230584e-4;  /*  T2 = 1 / 300.15^(3/2)  */		      T5 = sqrt(Temp);                      T3 = 1.45e10 * Temp * T5 * T2;                      T4 = exp(21.5565981 - Eg / (2.0 * Vtm));		      ni = T3 * T4;                      dni_dT = 2.175e10 * T2 * T5 * T4 + T3 * T4 *                               (-Vtm * T1 + Eg * KboQ) / (2.0 * Vtm * Vtm);                      T0 = log(1.0e20 * pParam->B3SOIDDnpeak / (ni * ni));		      vbi = Vtm * T0;                      dvbi_dT = KboQ * T0 + Vtm * (-2.0 * dni_dT / ni);		      if (pParam->B3SOIDDnsub > 0) {                         T0 = log(pParam->B3SOIDDnpeak / pParam->B3SOIDDnsub);		         vfbb = -model->B3SOIDDtype * Vtm*T0;                         dvfbb_dT = -model->B3SOIDDtype * KboQ*T0;                      } 		      else {                         T0 = log(-pParam->B3SOIDDnpeak*pParam->B3SOIDDnsub/ni/ni);		         vfbb = -model->B3SOIDDtype * Vtm*T0;                         dvfbb_dT = -model->B3SOIDDtype *                                   (KboQ * T0 + Vtm * 2.0 * dni_dT / ni);                      }/*		      phi = 2.0 * Vtm * log(pParam->B3SOIDDnpeak / ni);  */		      phi = here->B3SOIDDphi;		      sqrtPhi = sqrt(phi);		      Xdep0 = sqrt(2.0 * EPSSI / (Charge_q				         * pParam->B3SOIDDnpeak * 1.0e6))				         * sqrtPhi;		      /*  Save the values below for phi calculation in B3SOIDDaccept()  */		      here->B3SOIDDvtm = Vtm;		      here->B3SOIDDni = ni;                      /*  Use dTx_dVe variables to act as dTx_dT variables  */                      T8 = 1 / model->B3SOIDDtnom;                      T7 = model->B3SOIDDxbjt / pParam->B3SOIDDndiode;		      T0 = pow(TempRatio, T7);                      dT0_dVe = T7 * pow(TempRatio, T7 - 1.0) * T8;                      T7 = model->B3SOIDDxdif / pParam->B3SOIDDndiode;		      T1 = pow(TempRatio, T7);                      dT1_dVe = T7 * pow(TempRatio, T7 - 1.0) * T8;                      T7 = model->B3SOIDDxrec / pParam->B3SOIDDndiode / 2.0;		      T2 = pow(TempRatio, T7);                      dT2_dVe = T7 * pow(TempRatio, T7 - 1.0) * T8;		      T3 = TempRatio - 1.0;		      T4 = Eg300 / pParam->B3SOIDDndiode / Vtm * T3;                      dT4_dVe = Eg300 / pParam->B3SOIDDndiode / Vtm / Vtm *                                (Vtm * T8 - T3 * KboQ);		      T5 = exp(T4);                      dT5_dVe = dT4_dVe * T5;		      T6 = sqrt(T5);                      dT6_dVe = 0.5 / T6 * dT5_dVe;		      jbjt = pParam->B3SOIDDisbjt * T0 * T5;		      jdif = pParam->B3SOIDDisdif * T1 * T5;		      jrec = pParam->B3SOIDDisrec * T2 * T6;                      djbjt_dT = pParam->B3SOIDDisbjt * (T0 * dT5_dVe + T5 * dT0_dVe);                      djdif_dT = pParam->B3SOIDDisdif * (T1 * dT5_dVe + T5 * dT1_dVe);                      djrec_dT = pParam->B3SOIDDisrec * (T2 * dT6_dVe + T6 * dT2_dVe);                      T7 = model->B3SOIDDxtun / pParam->B3SOIDDntun;		      T0 = pow(TempRatio, T7);		      jtun = model->B3SOIDDistun * T0;                      djtun_dT = model->B3SOIDDistun * T7 * pow(TempRatio, T7 - 1.0) * T8;		      u0temp = pParam->B3SOIDDu0 * pow(TempRatio, pParam->B3SOIDDute);                      du0temp_dT = pParam->B3SOIDDu0 * pParam->B3SOIDDute *                                   pow(TempRatio, pParam->B3SOIDDute - 1.0) * T8;		      vsattemp = pParam->B3SOIDDvsat - pParam->B3SOIDDat * T3;                      dvsattemp_dT = -pParam->B3SOIDDat * T8;		      rds0 = (pParam->B3SOIDDrdsw + pParam->B3SOIDDprt		          * T3) / pParam->B3SOIDDrds0denom;                      drds0_dT = pParam->B3SOIDDprt / pParam->B3SOIDDrds0denom * T8;		      ua = pParam->B3SOIDDuatemp + pParam->B3SOIDDua1 * T3;		      ub = pParam->B3SOIDDubtemp + pParam->B3SOIDDub1 * T3;		      uc = pParam->B3SOIDDuctemp + pParam->B3SOIDDuc1 * T3;                      dua_dT = pParam->B3SOIDDua1 * T8;                      dub_dT = pParam->B3SOIDDub1 * T8;                      duc_dT = pParam->B3SOIDDuc1 * T8;		  }		  else {                      vbi = pParam->B3SOIDDvbi;                      vfbb = pParam->B3SOIDDvfbb;                      phi = pParam->B3SOIDDphi;                      sqrtPhi = pParam->B3SOIDDsqrtPhi;                      Xdep0 = pParam->B3SOIDDXdep0;                      jbjt = pParam->B3SOIDDjbjt;                      jdif = pParam->B3SOIDDjdif;                      jrec = pParam->B3SOIDDjrec;                      jtun = pParam->B3SOIDDjtun;                      u0temp = pParam->B3SOIDDu0temp;                      vsattemp = pParam->B3SOIDDvsattemp;                      rds0 = pParam->B3SOIDDrds0;                      ua = pParam->B3SOIDDua;                      ub = pParam->B3SOIDDub;                      uc = pParam->B3SOIDDuc;                      dni_dT = dvbi_dT = dvfbb_dT = djbjt_dT = djdif_dT = 0.0;                      djrec_dT = djtun_dT = du0temp_dT = dvsattemp_dT = 0.0;                      drds0_dT = dua_dT = dub_dT = duc_dT = 0.0;		  }		  		  /* TempRatio used for Vth and mobility */		  if (selfheat) {		      TempRatio = Temp / model->B3SOIDDtnom - 1.0;		  }		  else {		      TempRatio =  ckt->CKTtemp / model->B3SOIDDtnom - 1.0;		  }		  /* determine DC current and derivatives */		  vbd = vbs - vds;		  vgd = vgs - vds;		  vgb = vgs - vbs;		  ved = ves - vds;		  veb = ves - vbs;		  vge = vgs - ves;		  vpd = vps - vds;		  if (vds >= 0.0)		  {   /* normal mode */		      here->B3SOIDDmode = 1;		      Vds = vds;		      Vgs = vgs;		      Vbs = vbs;		      Vbd = vbd;		      Ves = ves;		      Vps = vps;		  }		  else		  {   /* inverse mode */		      here->B3SOIDDmode = -1;		      Vds = -vds;		      Vgs = vgd;		      Vbs = vbd;		      Vbd = vbs;		      Ves = ved;		      Vps = vpd;		  }                  if (here->B3SOIDDdebugMod > 2)		  {		     fprintf(fpdebug, "Vgs=%.4f, Vds=%.4f, Vbs=%.4f, ",			   Vgs, Vds, Vbs);		     fprintf(fpdebug, "Ves=%.4f, Vps=%.4f, Temp=%.1f\n", 			   Ves, Vps, Temp);		  }		  Vesfb = Ves - vfbb;		  Cbox = model->B3SOIDDcbox;		  K1 = pParam->B3SOIDDk1;		  ChargeComputationNeeded =  			 ((ckt->CKTmode & (MODEAC | MODETRAN | MODEINITSMSIG)) ||			 ((ckt->CKTmode & MODETRANOP) && (ckt->CKTmode & MODEUIC)))			 ? 1 : 0;                  if (here->B3SOIDDdebugMod == -1)                     ChargeComputationNeeded = 1;                  /* Poly Gate Si Depletion Effect */		  T0 = pParam->B3SOIDDvfb + phi;		  if ((pParam->B3SOIDDngate > 1.e18) && (pParam->B3SOIDDngate < 1.e25) 		       && (Vgs > T0))		  /* added to avoid the problem caused by ngate */		  {   T1 = 1.0e6 * Charge_q * EPSSI * pParam->B3SOIDDngate			 / (model->B3SOIDDcox * model->B3SOIDDcox);		      T4 = sqrt(1.0 + 2.0 * (Vgs - T0) / T1);		      T2 = T1 * (T4 - 1.0);		      T3 = 0.5 * T2 * T2 / T1; /* T3 = Vpoly */		      T7 = 1.12 - T3 - 0.05;		      T6 = sqrt(T7 * T7 + 0.224);		      T5 = 1.12 - 0.5 * (T7 + T6);		      Vgs_eff = Vgs - T5;		      dVgs_eff_dVg = 1.0 - (0.5 - 0.5 / T4) * (1.0 + T7 / T6); 		  }		  else		  {   Vgs_eff = Vgs;		      dVgs_eff_dVg = 1.0;		  }		  Leff = pParam->B3SOIDDleff;		  if (selfheat) {		      Vtm = KboQ * Temp;                      dVtm_dT = KboQ;		  }		  else {		      Vtm = model->B3SOIDDvtm;                      dVtm_dT = 0.0;		  }		  V0 = vbi - phi;/* Prepare Vbs0t */		      T0 = -pParam->B3SOIDDdvbd1 * pParam->B3SOIDDleff / pParam->B3SOIDDlitl;		      T1 = pParam->B3SOIDDdvbd0 * (exp(0.5*T0) + 2*exp(T0));		      T2 = T1 * (vbi - phi);		      T3 = 0.5 * model->B3SOIDDqsi / model->B3SOIDDcsi;		      Vbs0t = phi - T3 + pParam->B3SOIDDvbsa + T2;                      if (selfheat)                         dVbs0t_dT = T1 * dvbi_dT;                      else                         dVbs0t_dT = 0.0;/* Prepare Vbs0 */			  T0 = 1 + model->B3SOIDDcsieff / Cbox;                          T1 = pParam->B3SOIDDkb1 / T0;			  T2 = T1 * (Vbs0t - Vesfb);                          /* T6 is Vbs0 before limiting */                          T6 = Vbs0t - T2;                          dT6_dVe = T1;                          if (selfheat)                             dT6_dT = dVbs0t_dT - T1 * (dVbs0t_dT + dvfbb_dT);                          else                             dT6_dT = 0.0;                           /* limit Vbs0 to below phi */                          T1 = phi - pParam->B3SOIDDdelp;                          T2 = T1 - T6 - DELT_Vbseff;                          T3 = sqrt(T2 * T2 + 4.0 * DELT_Vbseff);                          Vbs0 = T1 - 0.5 * (T2 + T3);                          T4 = 0.5 * (1 + T2/T3);                          dVbs0_dVe = T4 * dT6_dVe;                          if (selfheat)  dVbs0_dT = T4 * dT6_dT;                          else  dVbs0_dT = 0.0;			  T1 = Vbs0t - Vbs0 - DELT_Vbsmos;			  T2 = sqrt(T1 * T1 + DELT_Vbsmos * DELT_Vbsmos);			  T3 = 0.5 * (T1 + T2);			  T4 = T3 * model->B3SOIDDcsieff / model->B3SOIDDqsieff;			  Vbs0mos = Vbs0 - 0.5 * T3 * T4;                          T5 = 0.5 * T4 * (1 + T1 / T2);			  dVbs0mos_dVe = dVbs0_dVe * (1 + T5);                          if (selfheat)			     dVbs0mos_dT = dVbs0_dT - (dVbs0t_dT - dVbs0_dT) * T5;                          else			     dVbs0mos_dT = 0.0;/* Prepare Vthfd - treat Vbs0mos as if it were independent variable Vb */		     Phis = phi - Vbs0mos;		     dPhis_dVb = -1;		     sqrtPhis = sqrt(Phis);		     dsqrtPhis_dVb = -0.5 / sqrtPhis;		     Xdep = Xdep0 * sqrtPhis / sqrtPhi;		     dXdep_dVb = (Xdep0 / sqrtPhi)				 * dsqrtPhis_dVb;		     sqrtXdep = sqrt(Xdep);		     T0 = pParam->B3SOIDDdvt2 * Vbs0mos;		     if (T0 >= - 0.5)		     {   T1 = 1.0 + T0;			 T2 = pParam->B3SOIDDdvt2;		     }		     else /* Added to avoid any discontinuity problems caused by dvt2*/ 		     {   T4 = 1.0 / (3.0 + 8.0 * T0);			 T1 = (1.0 + 3.0 * T0) * T4; 			 T2 = pParam->B3SOIDDdvt2 * T4 * T4;		     }		     lt1 = model->B3SOIDDfactor1 * sqrtXdep * T1;		     dlt1_dVb = model->B3SOIDDfactor1 * (0.5 / sqrtXdep * T1 * dXdep_dVb			      + sqrtXdep * T2);		     T0 = pParam->B3SOIDDdvt2w * Vbs0mos;		     if (T0 >= - 0.5)		     {   T1 = 1.0 + T0;			 T2 = pParam->B3SOIDDdvt2w;		     }		     else /* Added to avoid any discontinuity problems caused by			     dvt2w */		     {   T4 = 1.0 / (3.0 + 8.0 * T0);			 T1 = (1.0 + 3.0 * T0) * T4;			 T2 = pParam->B3SOIDDdvt2w * T4 * T4;		     }		     ltw= model->B3SOIDDfactor1 * sqrtXdep * T1;		     dltw_dVb = model->B3SOIDDfactor1 * (0.5 / sqrtXdep * T1 * dXdep_dVb 			      + sqrtXdep * T2);		     T0 = -0.5 * pParam->B3SOIDDdvt1 * Leff / lt1;		     if (T0 > -EXP_THRESHOLD)		     {   T1 = exp(T0);			 dT1_dVb = -T0 / lt1 * T1 * dlt1_dVb;			 Theta0 = T1 * (1.0 + 2.0 * T1);			 dTheta0_dVb = (1.0 + 4.0 * T1) * dT1_dVb;		     }		     else		     {   T1 = MIN_EXP;			 Theta0 = T1 * (1.0 + 2.0 * T1);			 dTheta0_dVb = 0.0;		     }		     here->B3SOIDDthetavth = pParam->B3SOIDDdvt0 * Theta0;		     Delt_vth = here->B3SOIDDthetavth * V0;		     dDelt_vth_dVb = pParam->B3SOIDDdvt0 * dTheta0_dVb * V0;                     if (selfheat) dDelt_vth_dT = here->B3SOIDDthetavth * dvbi_dT;                     else dDelt_vth_dT = 0.0;		     T0 = -0.5*pParam->B3SOIDDdvt1w * pParam->B3SOIDDweff*Leff/ltw;		     if (T0 > -EXP_THRESHOLD)		     {   T1 = exp(T0);			 T2 = T1 * (1.0 + 2.0 * T1);			 dT1_dVb = -T0 / ltw * T1 * dltw_dVb;			 dT2_dVb = (1.0 + 4.0 * T1) * dT1_dVb;		     }		     else		     {   T1 = MIN_EXP;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -