📄 b3v1noi.c
字号:
/********** * Copyright 1990 Regents of the University of California. All rights reserved. * File: b3v1noi.c * Author: 1995 Min-Chie Jeng and Mansun Chan. * Modified by Paolo Nenzi 2002 **********/ /* * Release Notes: * BSIM3v3.1, Released by yuhua 96/12/08 */#include "ngspice.h"#include "bsim3v1def.h"#include "cktdefs.h"#include "iferrmsg.h"#include "noisedef.h"#include "suffix.h"#include "const.h" /* jwan *//* * BSIM3v1noise (mode, operation, firstModel, ckt, data, OnDens) * This routine names and evaluates all of the noise sources * associated with MOSFET's. It starts with the model *firstModel and * traverses all of its insts. It then proceeds to any other models * on the linked list. The total output noise density generated by * all of the MOSFET's is summed with the variable "OnDens". *//* Channel thermal and flicker noises are calculated based on the value of model->BSIM3v1noiMod. If model->BSIM3v1noiMod = 1, Channel thermal noise = SPICE2 model Flicker noise = SPICE2 model If model->BSIM3v1noiMod = 2, Channel thermal noise = BSIM3v1 model Flicker noise = BSIM3v1 model If model->BSIM3v1noiMod = 3, Channel thermal noise = SPICE2 model Flicker noise = BSIM3v1 model If model->BSIM3v1noiMod = 4, Channel thermal noise = BSIM3v1 model Flicker noise = SPICE2 model */extern void NevalSrc();extern double Nintegrate();doubleStrongInversionNoiseEval_b3v1(double vgs, double vds, BSIM3v1model *model, BSIM3v1instance *here, double freq, double temp){struct bsim3v1SizeDependParam *pParam;double cd, esat, DelClm, EffFreq, N0, Nl, Vgst;double T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, Ssi; pParam = here->pParam; cd = fabs(here->BSIM3v1cd) * here->BSIM3v1m; if (vds > here->BSIM3v1vdsat) { esat = 2.0 * pParam->BSIM3v1vsattemp / here->BSIM3v1ueff; T0 = ((((vds - here->BSIM3v1vdsat) / pParam->BSIM3v1litl) + model->BSIM3v1em) / esat); DelClm = pParam->BSIM3v1litl * log (MAX(T0, N_MINLOG)); } else DelClm = 0.0; EffFreq = pow(freq, model->BSIM3v1ef); T1 = CHARGE * CHARGE * 8.62e-5 * cd * temp * here->BSIM3v1ueff; T2 = 1.0e8 * EffFreq * model->BSIM3v1cox * pParam->BSIM3v1leff * pParam->BSIM3v1leff; Vgst = vgs - here->BSIM3v1von; N0 = model->BSIM3v1cox * Vgst / CHARGE; if (N0 < 0.0) N0 = 0.0; Nl = model->BSIM3v1cox * (Vgst - MIN(vds, here->BSIM3v1vdsat)) / CHARGE; if (Nl < 0.0) Nl = 0.0; T3 = model->BSIM3v1oxideTrapDensityA * log(MAX(((N0 + 2.0e14) / (Nl + 2.0e14)), N_MINLOG)); T4 = model->BSIM3v1oxideTrapDensityB * (N0 - Nl); T5 = model->BSIM3v1oxideTrapDensityC * 0.5 * (N0 * N0 - Nl * Nl); T6 = 8.62e-5 * temp * cd * cd; T7 = 1.0e8 * EffFreq * pParam->BSIM3v1leff * pParam->BSIM3v1leff * pParam->BSIM3v1weff * here->BSIM3v1m; T8 = model->BSIM3v1oxideTrapDensityA + model->BSIM3v1oxideTrapDensityB * Nl + model->BSIM3v1oxideTrapDensityC * Nl * Nl; T9 = (Nl + 2.0e14) * (Nl + 2.0e14); Ssi = T1 / T2 * (T3 + T4 + T5) + T6 / T7 * DelClm * T8 / T9; return Ssi;}intBSIM3v1noise (int mode, int operation, GENmodel *inModel, CKTcircuit *ckt, Ndata *data, double *OnDens){BSIM3v1model *model = (BSIM3v1model *)inModel;BSIM3v1instance *here;struct bsim3v1SizeDependParam *pParam;char name[N_MXVLNTH];double tempOnoise;double tempInoise;double noizDens[BSIM3v1NSRCS];double lnNdens[BSIM3v1NSRCS];double vgs, vds, Slimit;double T1, T10, T11;double Ssi, Swi;int i; /* define the names of the noise sources */ static char *BSIM3v1nNames[BSIM3v1NSRCS] = { /* Note that we have to keep the order */ ".rd", /* noise due to rd */ /* consistent with the index definitions */ ".rs", /* noise due to rs */ /* in BSIM3v1defs.h */ ".id", /* noise due to id */ ".1overf", /* flicker (1/f) noise */ "" /* total transistor noise */ }; for (; model != NULL; model = model->BSIM3v1nextModel) { for (here = model->BSIM3v1instances; here != NULL; here = here->BSIM3v1nextInstance) { if (here->BSIM3v1owner != ARCHme) continue; pParam = here->pParam; switch (operation) { case N_OPEN: /* see if we have to to produce a summary report */ /* if so, name all the noise generators */ if (((NOISEAN*)ckt->CKTcurJob)->NStpsSm != 0) { switch (mode) { case N_DENS: for (i = 0; i < BSIM3v1NSRCS; i++) { (void) sprintf(name, "onoise.%s%s", here->BSIM3v1name, BSIM3v1nNames[i]); data->namelist = (IFuid *) trealloc( (char *) data->namelist, (data->numPlots + 1) * sizeof(IFuid)); if (!data->namelist) return(E_NOMEM); (*(SPfrontEnd->IFnewUid)) (ckt, &(data->namelist[data->numPlots++]), (IFuid) NULL, name, UID_OTHER, (void **) NULL); /* we've added one more plot */ } break; case INT_NOIZ: for (i = 0; i < BSIM3v1NSRCS; i++) { (void) sprintf(name, "onoise_total.%s%s", here->BSIM3v1name, BSIM3v1nNames[i]); data->namelist = (IFuid *) trealloc( (char *) data->namelist, (data->numPlots + 1) * sizeof(IFuid)); if (!data->namelist) return(E_NOMEM); (*(SPfrontEnd->IFnewUid)) (ckt, &(data->namelist[data->numPlots++]), (IFuid) NULL, name, UID_OTHER, (void **) NULL); /* we've added one more plot */ (void) sprintf(name, "inoise_total.%s%s", here->BSIM3v1name, BSIM3v1nNames[i]); data->namelist = (IFuid *) trealloc( (char *) data->namelist, (data->numPlots + 1) * sizeof(IFuid)); if (!data->namelist) return(E_NOMEM); (*(SPfrontEnd->IFnewUid)) (ckt, &(data->namelist[data->numPlots++]), (IFuid) NULL, name, UID_OTHER, (void **)NULL); /* we've added one more plot */ } break; } } break; case N_CALC: switch (mode) { case N_DENS: NevalSrc(&noizDens[BSIM3v1RDNOIZ], &lnNdens[BSIM3v1RDNOIZ], ckt, THERMNOISE, here->BSIM3v1dNodePrime, here->BSIM3v1dNode, here->BSIM3v1drainConductance * here->BSIM3v1m); NevalSrc(&noizDens[BSIM3v1RSNOIZ], &lnNdens[BSIM3v1RSNOIZ], ckt, THERMNOISE, here->BSIM3v1sNodePrime, here->BSIM3v1sNode, here->BSIM3v1sourceConductance * here->BSIM3v1m); switch( model->BSIM3v1noiMod ) { case 1: case 3: NevalSrc(&noizDens[BSIM3v1IDNOIZ], &lnNdens[BSIM3v1IDNOIZ], ckt, THERMNOISE, here->BSIM3v1dNodePrime, here->BSIM3v1sNodePrime, (2.0 / 3.0 * fabs(here->BSIM3v1gm + here->BSIM3v1gds + here->BSIM3v1gmbs) * here->BSIM3v1m)); break; case 2: case 4: NevalSrc(&noizDens[BSIM3v1IDNOIZ], &lnNdens[BSIM3v1IDNOIZ], ckt, THERMNOISE, here->BSIM3v1dNodePrime, here->BSIM3v1sNodePrime, (here->BSIM3v1ueff * fabs((here->BSIM3v1qinv * here->BSIM3v1m) / (pParam->BSIM3v1leff * pParam->BSIM3v1leff)))); break; } NevalSrc(&noizDens[BSIM3v1FLNOIZ], (double*) NULL, ckt, N_GAIN, here->BSIM3v1dNodePrime, here->BSIM3v1sNodePrime, (double) 0.0); switch( model->BSIM3v1noiMod ) { case 1: case 4: noizDens[BSIM3v1FLNOIZ] *= model->BSIM3v1kf * exp(model->BSIM3v1af * log(MAX(fabs(here->BSIM3v1cd * here->BSIM3v1m), N_MINLOG))) / (pow(data->freq, model->BSIM3v1ef) * pParam->BSIM3v1leff * pParam->BSIM3v1leff * model->BSIM3v1cox); break; case 2: case 3: vgs = *(ckt->CKTstates[0] + here->BSIM3v1vgs); vds = *(ckt->CKTstates[0] + here->BSIM3v1vds); if (vds < 0.0) { vds = -vds; vgs = vgs + vds; } if (vgs >= here->BSIM3v1von + 0.1) { Ssi = StrongInversionNoiseEval_b3v1(vgs, vds, model, here, data->freq, ckt->CKTtemp); noizDens[BSIM3v1FLNOIZ] *= Ssi; } else { pParam = here->pParam; T10 = model->BSIM3v1oxideTrapDensityA * 8.62e-5 * ckt->CKTtemp; T11 = pParam->BSIM3v1weff * here->BSIM3v1m * pParam->BSIM3v1leff * pow(data->freq, model->BSIM3v1ef) * 4.0e36; Swi = T10 / T11 * here->BSIM3v1cd * here->BSIM3v1m * here->BSIM3v1cd * here->BSIM3v1m; Slimit = StrongInversionNoiseEval_b3v1( here->BSIM3v1von + 0.1, vds, model, here, data->freq, ckt->CKTtemp); T1 = Swi + Slimit; if (T1 > 0.0) noizDens[BSIM3v1FLNOIZ] *= (Slimit * Swi) / T1; else noizDens[BSIM3v1FLNOIZ] *= 0.0; } break; } lnNdens[BSIM3v1FLNOIZ] = log(MAX(noizDens[BSIM3v1FLNOIZ], N_MINLOG)); noizDens[BSIM3v1TOTNOIZ] = noizDens[BSIM3v1RDNOIZ] + noizDens[BSIM3v1RSNOIZ] + noizDens[BSIM3v1IDNOIZ] + noizDens[BSIM3v1FLNOIZ]; lnNdens[BSIM3v1TOTNOIZ] = log(MAX(noizDens[BSIM3v1TOTNOIZ], N_MINLOG)); *OnDens += noizDens[BSIM3v1TOTNOIZ]; if (data->delFreq == 0.0) { /* if we haven't done any previous integration, we need to initialize our "history" variables. */ for (i = 0; i < BSIM3v1NSRCS; i++) { here->BSIM3v1nVar[LNLSTDENS][i] = lnNdens[i]; } /* clear out our integration variables if it's the first pass */ if (data->freq == ((NOISEAN*) ckt->CKTcurJob)->NstartFreq) { for (i = 0; i < BSIM3v1NSRCS; i++) { here->BSIM3v1nVar[OUTNOIZ][i] = 0.0; here->BSIM3v1nVar[INNOIZ][i] = 0.0; } } } else { /* data->delFreq != 0.0, we have to integrate. */ for (i = 0; i < BSIM3v1NSRCS; i++) { if (i != BSIM3v1TOTNOIZ) { tempOnoise = Nintegrate(noizDens[i], lnNdens[i], here->BSIM3v1nVar[LNLSTDENS][i], data); tempInoise = Nintegrate(noizDens[i] * data->GainSqInv, lnNdens[i] + data->lnGainInv, here->BSIM3v1nVar[LNLSTDENS][i] + data->lnGainInv, data); here->BSIM3v1nVar[LNLSTDENS][i] = lnNdens[i]; data->outNoiz += tempOnoise; data->inNoise += tempInoise; if (((NOISEAN*) ckt->CKTcurJob)->NStpsSm != 0) { here->BSIM3v1nVar[OUTNOIZ][i] += tempOnoise; here->BSIM3v1nVar[OUTNOIZ][BSIM3v1TOTNOIZ] += tempOnoise; here->BSIM3v1nVar[INNOIZ][i] += tempInoise; here->BSIM3v1nVar[INNOIZ][BSIM3v1TOTNOIZ] += tempInoise; } } } } if (data->prtSummary) { for (i = 0; i < BSIM3v1NSRCS; i++) { /* print a summary report */ data->outpVector[data->outNumber++] = noizDens[i]; } } break; case INT_NOIZ: /* already calculated, just output */ if (((NOISEAN*)ckt->CKTcurJob)->NStpsSm != 0) { for (i = 0; i < BSIM3v1NSRCS; i++) { data->outpVector[data->outNumber++] = here->BSIM3v1nVar[OUTNOIZ][i]; data->outpVector[data->outNumber++] = here->BSIM3v1nVar[INNOIZ][i]; } } break; } break; case N_CLOSE: /* do nothing, the main calling routine will close */ return (OK); break; /* the plots */ } /* switch (operation) */ } /* for here */ } /* for model */ return(OK);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -