📄 sputils.c
字号:
#if PSEUDOCONDITION/* * CALCULATE PSEUDOCONDITION * * Computes the magnitude of the ratio of the largest to the smallest * pivots. This quantity is an indicator of ill-conditioning in the * matrix. If this ratio is large, and if the matrix is scaled such * that uncertainties in the RHS and the matrix entries are * equilibrated, then the matrix is ill-conditioned. However, a * small ratio does not necessarily imply that the matrix is * well-conditioned. This routine must only be used after a matrix * has been factored by spOrderAndFactor() or spFactor() and before * it is cleared by spClear() or spInitialize(). The pseudocondition * is faster to compute than the condition number calculated by * spCondition(), but is not as informative. * * >>> Returns: * The magnitude of the ratio of the largest to smallest pivot used during * previous factorization. If the matrix was singular, zero is returned. * * >>> Arguments: * eMatrix <input> (char *) * Pointer to the matrix. */RealNumberspPseudoCondition(char *eMatrix){ MatrixPtr Matrix = (MatrixPtr)eMatrix; int I; ArrayOfElementPtrs Diag; RealNumber MaxPivot, MinPivot, Mag; /* Begin `spPseudoCondition'. */ assert( IS_SPARSE(Matrix) && IS_FACTORED(Matrix) ); if (Matrix->Error == spSINGULAR || Matrix->Error == spZERO_DIAG) return 0.0; Diag = Matrix->Diag; MaxPivot = MinPivot = ELEMENT_MAG( Diag[1] ); for (I = 2; I <= Matrix->Size; I++) { Mag = ELEMENT_MAG( Diag[I] ); if (Mag > MaxPivot) MaxPivot = Mag; else if (Mag < MinPivot) MinPivot = Mag; } assert( MaxPivot > 0.0); return MaxPivot / MinPivot;}#endif#if CONDITION/* * ESTIMATE CONDITION NUMBER * * Computes an estimate of the condition number using a variation on * the LINPACK condition number estimation algorithm. This quantity * is an indicator of ill-conditioning in the matrix. To avoid * problems with overflow, the reciprocal of the condition number is * returned. If this number is small, and if the matrix is scaled * such that uncertainties in the RHS and the matrix entries are * equilibrated, then the matrix is ill-conditioned. If the this * number is near one, the matrix is well conditioned. This routine * must only be used after a matrix has been factored by * spOrderAndFactor() or spFactor() and before it is cleared by * spClear() or spInitialize(). * * Unlike the LINPACK condition number estimator, this routines * returns the L infinity condition number. This is an artifact of * Sparse placing ones on the diagonal of the upper triangular matrix * rather than the lower. This difference should be of no * importance. * * References: * A.K. Cline, C.B. Moler, G.W. Stewart, J.H. Wilkinson. An estimate * for the condition number of a matrix. SIAM Journal on Numerical * Analysis. Vol. 16, No. 2, pages 368-375, April 1979. * * J.J. Dongarra, C.B. Moler, J.R. Bunch, G.W. Stewart. LINPACK * User's Guide. SIAM, 1979. * * Roger G. Grimes, John G. Lewis. Condition number estimation for * sparse matrices. SIAM Journal on Scientific and Statistical * Computing. Vol. 2, No. 4, pages 384-388, December 1981. * * Dianne Prost O'Leary. Estimating matrix condition numbers. SIAM * Journal on Scientific and Statistical Computing. Vol. 1, No. 2, * pages 205-209, June 1980. * * >>> Returns: * The reciprocal of the condition number. If the matrix was singular, * zero is returned. * * >>> Arguments: * eMatrix <input> (char *) * Pointer to the matrix. * NormOfMatrix <input> (RealNumber) * The L-infinity norm of the unfactored matrix as computed by * spNorm(). * pError <output> (int *) * Used to return error code. * * >>> Possible errors: * spSINGULAR * spNO_MEMORY */RealNumberspCondition( eMatrix, NormOfMatrix, pError )char *eMatrix;RealNumber NormOfMatrix;int *pError;{ MatrixPtr Matrix = (MatrixPtr)eMatrix; ElementPtr pElement; RealVector T, Tm; int I, K, Row; ElementPtr pPivot; int Size; RealNumber E, Em, Wp, Wm, ASp, ASm, ASw, ASy, ASv, ASz, MaxY, ScaleFactor; RealNumber Linpack, OLeary, InvNormOfInverse, ComplexCondition();#define SLACK 1e4 /* Begin `spCondition'. */ assert( IS_SPARSE(Matrix) && IS_FACTORED(Matrix) ); *pError = Matrix->Error; if (Matrix->Error >= spFATAL) return 0.0; if (NormOfMatrix == 0.0) { *pError = spSINGULAR; return 0.0; } if (Matrix->Complex) return ComplexCondition( Matrix, NormOfMatrix, pError ); Size = Matrix->Size; T = Matrix->Intermediate; Tm = Matrix->Intermediate + Size; for (I = Size; I > 0; I--) T[I] = 0.0; /* * Part 1. Ay = e. * * Solve Ay = LUy = e where e consists of +1 and -1 terms with the * sign chosen to maximize the size of w in Lw = e. Since the * terms in w can get very large, scaling is used to avoid * overflow. */ /* Forward elimination. Solves Lw = e while choosing e. */ E = 1.0; for (I = 1; I <= Size; I++) { pPivot = Matrix->Diag[I]; if (T[I] < 0.0) Em = -E; else Em = E; Wm = (Em + T[I]) * pPivot->Real; if (ABS(Wm) > SLACK) { ScaleFactor = 1.0 / MAX( SQR( SLACK ), ABS(Wm) ); for (K = Size; K > 0; K--) T[K] *= ScaleFactor; E *= ScaleFactor; Em *= ScaleFactor; Wm = (Em + T[I]) * pPivot->Real; } Wp = (T[I] - Em) * pPivot->Real; ASp = ABS(T[I] - Em); ASm = ABS(Em + T[I]); /* Update T for both values of W, minus value is placed in Tm. */ pElement = pPivot->NextInCol; while (pElement != NULL) { Row = pElement->Row; Tm[Row] = T[Row] - (Wm * pElement->Real); T[Row] -= (Wp * pElement->Real); ASp += ABS(T[Row]); ASm += ABS(Tm[Row]); pElement = pElement->NextInCol; } /* If minus value causes more growth, overwrite T with its values. */ if (ASm > ASp) { T[I] = Wm; pElement = pPivot->NextInCol; while (pElement != NULL) { T[pElement->Row] = Tm[pElement->Row]; pElement = pElement->NextInCol; } } else T[I] = Wp; } /* Compute 1-norm of T, which now contains w, and scale ||T|| to 1/SLACK. */ for (ASw = 0.0, I = Size; I > 0; I--) ASw += ABS(T[I]); ScaleFactor = 1.0 / (SLACK * ASw); if (ScaleFactor < 0.5) { for (I = Size; I > 0; I--) T[I] *= ScaleFactor; E *= ScaleFactor; } /* Backward Substitution. Solves Uy = w.*/ for (I = Size; I >= 1; I--) { pElement = Matrix->Diag[I]->NextInRow; while (pElement != NULL) { T[I] -= pElement->Real * T[pElement->Col]; pElement = pElement->NextInRow; } if (ABS(T[I]) > SLACK) { ScaleFactor = 1.0 / MAX( SQR( SLACK ), ABS(T[I]) ); for (K = Size; K > 0; K--) T[K] *= ScaleFactor; E *= ScaleFactor; } } /* Compute 1-norm of T, which now contains y, and scale ||T|| to 1/SLACK. */ for (ASy = 0.0, I = Size; I > 0; I--) ASy += ABS(T[I]); ScaleFactor = 1.0 / (SLACK * ASy); if (ScaleFactor < 0.5) { for (I = Size; I > 0; I--) T[I] *= ScaleFactor; ASy = 1.0 / SLACK; E *= ScaleFactor; } /* Compute infinity-norm of T for O'Leary's estimate. */ for (MaxY = 0.0, I = Size; I > 0; I--) if (MaxY < ABS(T[I])) MaxY = ABS(T[I]); /* * Part 2. * * A* z = y where the * represents the transpose. Recall that A = * LU implies A* = U* L*. */ /* Forward elimination, U* v = y. */ for (I = 1; I <= Size; I++) { pElement = Matrix->Diag[I]->NextInRow; while (pElement != NULL) { T[pElement->Col] -= T[I] * pElement->Real; pElement = pElement->NextInRow; } if (ABS(T[I]) > SLACK) { ScaleFactor = 1.0 / MAX( SQR( SLACK ), ABS(T[I]) ); for (K = Size; K > 0; K--) T[K] *= ScaleFactor; ASy *= ScaleFactor; } } /* Compute 1-norm of T, which now contains v, and scale ||T|| to 1/SLACK. */ for (ASv = 0.0, I = Size; I > 0; I--) ASv += ABS(T[I]); ScaleFactor = 1.0 / (SLACK * ASv); if (ScaleFactor < 0.5) { for (I = Size; I > 0; I--) T[I] *= ScaleFactor; ASy *= ScaleFactor; } /* Backward Substitution, L* z = v. */ for (I = Size; I >= 1; I--) { pPivot = Matrix->Diag[I]; pElement = pPivot->NextInCol; while (pElement != NULL) { T[I] -= pElement->Real * T[pElement->Row]; pElement = pElement->NextInCol; } T[I] *= pPivot->Real; if (ABS(T[I]) > SLACK) { ScaleFactor = 1.0 / MAX( SQR( SLACK ), ABS(T[I]) ); for (K = Size; K > 0; K--) T[K] *= ScaleFactor; ASy *= ScaleFactor; } } /* Compute 1-norm of T, which now contains z. */ for (ASz = 0.0, I = Size; I > 0; I--) ASz += ABS(T[I]); Linpack = ASy / ASz; OLeary = E / MaxY; InvNormOfInverse = MIN( Linpack, OLeary ); return InvNormOfInverse / NormOfMatrix;}/* * ESTIMATE CONDITION NUMBER * * Complex version of spCondition(). * * >>> Returns: * The reciprocal of the condition number. * * >>> Arguments: * Matrix <input> (MatrixPtr) * Pointer to the matrix. * NormOfMatrix <input> (RealNumber) * The L-infinity norm of the unfactored matrix as computed by * spNorm(). * pError <output> (int *) * Used to return error code. * * >>> Possible errors: * spNO_MEMORY */static RealNumberComplexCondition( Matrix, NormOfMatrix, pError )MatrixPtr Matrix;RealNumber NormOfMatrix;int *pError;{ ElementPtr pElement; ComplexVector T, Tm; int I, K, Row; ElementPtr pPivot; int Size; RealNumber E, Em, ASp, ASm, ASw, ASy, ASv, ASz, MaxY, ScaleFactor; RealNumber Linpack, OLeary, InvNormOfInverse; ComplexNumber Wp, Wm; /* Begin `ComplexCondition'. */ Size = Matrix->Size; T = (ComplexVector)Matrix->Intermediate; Tm = ALLOC( ComplexNumber, Size+1 ); if (Tm == NULL) { *pError = spNO_MEMORY; return 0.0; } for (I = Size; I > 0; I--) T[I].Real = T[I].Imag = 0.0; /* * Part 1. Ay = e. * * Solve Ay = LUy = e where e consists of +1 and -1 terms with the * sign chosen to maximize the size of w in Lw = e. Since the * terms in w can get very large, scaling is used to avoid * overflow. */ /* Forward elimination. Solves Lw = e while choosing e. */ E = 1.0; for (I = 1; I <= Size; I++) { pPivot = Matrix->Diag[I]; if (T[I].Real < 0.0) Em = -E; else Em = E; Wm = T[I]; Wm.Real += Em; ASm = CMPLX_1_NORM( Wm ); CMPLX_MULT_ASSIGN( Wm, *pPivot ); if (CMPLX_1_NORM(Wm) > SLACK) { ScaleFactor = 1.0 / MAX( SQR( SLACK ), CMPLX_1_NORM(Wm) ); for (K = Size; K > 0; K--) SCLR_MULT_ASSIGN( T[K], ScaleFactor ); E *= ScaleFactor; Em *= ScaleFactor; ASm *= ScaleFactor; SCLR_MULT_ASSIGN( Wm, ScaleFactor ); } Wp = T[I]; Wp.Real -= Em; ASp = CMPLX_1_NORM( Wp ); CMPLX_MULT_ASSIGN( Wp, *pPivot ); /* Update T for both values of W, minus value is placed in Tm. */ pElement = pPivot->NextInCol; while (pElement != NULL) { Row = pElement->Row; /* Cmplx expr: Tm[Row] = T[Row] - (Wp * *pElement). */ CMPLX_MULT_SUBT( Tm[Row], Wm, *pElement, T[Row] ); /* Cmplx expr: T[Row] -= Wp * *pElement. */ CMPLX_MULT_SUBT_ASSIGN( T[Row], Wm, *pElement ); ASp += CMPLX_1_NORM(T[Row]); ASm += CMPLX_1_NORM(Tm[Row]); pElement = pElement->NextInCol; } /* If minus value causes more growth, overwrite T with its values. */ if (ASm > ASp) { T[I] = Wm; pElement = pPivot->NextInCol; while (pElement != NULL) { T[pElement->Row] = Tm[pElement->Row]; pElement = pElement->NextInCol; } } else T[I] = Wp; } /* Compute 1-norm of T, which now contains w, and scale ||T|| to 1/SLACK. */ for (ASw = 0.0, I = Size; I > 0; I--) ASw += CMPLX_1_NORM(T[I]); ScaleFactor = 1.0 / (SLACK * ASw); if (ScaleFactor < 0.5) { for (I = Size; I > 0; I--) SCLR_MULT_ASSIGN( T[I], ScaleFactor ); E *= ScaleFactor; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -