⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 freqz.py

📁 gnuradio软件无线电源程序.现在的手机多基于软件无线电
💻 PY
字号:
#!/usr/bin/env python## Copyright 2005 Free Software Foundation, Inc.# # This file is part of GNU Radio# # GNU Radio is free software; you can redistribute it and/or modify# it under the terms of the GNU General Public License as published by# the Free Software Foundation; either version 2, or (at your option)# any later version.# # GNU Radio is distributed in the hope that it will be useful,# but WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the# GNU General Public License for more details.# # You should have received a copy of the GNU General Public License# along with GNU Radio; see the file COPYING.  If not, write to# the Free Software Foundation, Inc., 59 Temple Place - Suite 330,# Boston, MA 02111-1307, USA.# # This code lifted from various parts of www.scipy.org -eb 2005-01-24# Copyright (c) 2001, 2002 Enthought, Inc.# # All rights reserved.# # Redistribution and use in source and binary forms, with or without# modification, are permitted provided that the following conditions are met:# #   a. Redistributions of source code must retain the above copyright notice,#      this list of conditions and the following disclaimer.#   b. Redistributions in binary form must reproduce the above copyright#      notice, this list of conditions and the following disclaimer in the#      documentation and/or other materials provided with the distribution.#   c. Neither the name of the Enthought nor the names of its contributors#      may be used to endorse or promote products derived from this software#      without specific prior written permission.# # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH# DAMAGE.# __all__ = ['freqz']import Numericfrom Numeric import *Num=Numericdef atleast_1d(*arys):    """ Force a sequence of arrays to each be at least 1D.         Description:            Force an array to be at least 1D.  If an array is 0D, the             array is converted to a single row of values.  Otherwise,            the array is unaltered.         Arguments:            *arys -- arrays to be converted to 1 or more dimensional array.         Returns:            input array converted to at least 1D array.    """    res = []    for ary in arys:        ary = asarray(ary)        if len(ary.shape) == 0:             result = Numeric.array([ary[0]])        else:            result = ary        res.append(result)    if len(res) == 1:        return res[0]    else:        return resdef polyval(p,x):    """Evaluate the polynomial p at x.  If x is a polynomial then composition.    Description:      If p is of length N, this function returns the value:      p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]      x can be a sequence and p(x) will be returned for all elements of x.      or x can be another polynomial and the composite polynomial p(x) will be      returned.    """    p = asarray(p)    if isinstance(x,poly1d):        y = 0    else:        x = asarray(x)        y = Numeric.zeros(x.shape,x.typecode())    for i in range(len(p)):        y = x * y + p[i]    return yclass poly1d:    """A one-dimensional polynomial class.    p = poly1d([1,2,3]) constructs the polynomial x**2 + 2 x + 3    p(0.5) evaluates the polynomial at the location    p.r  is a list of roots    p.c  is the coefficient array [1,2,3]    p.order is the polynomial order (after leading zeros in p.c are removed)    p[k] is the coefficient on the kth power of x (backwards from         sequencing the coefficient array.    polynomials can be added, substracted, multplied and divided (returns         quotient and remainder).    asarray(p) will also give the coefficient array, so polynomials can         be used in all functions that accept arrays.    """    def __init__(self, c_or_r, r=0):        if isinstance(c_or_r,poly1d):            for key in c_or_r.__dict__.keys():                self.__dict__[key] = c_or_r.__dict__[key]            return        if r:            c_or_r = poly(c_or_r)        c_or_r = atleast_1d(c_or_r)        if len(c_or_r.shape) > 1:            raise ValueError, "Polynomial must be 1d only."        c_or_r = trim_zeros(c_or_r, trim='f')        if len(c_or_r) == 0:            c_or_r = Numeric.array([0])        self.__dict__['coeffs'] = c_or_r        self.__dict__['order'] = len(c_or_r) - 1    def __array__(self,t=None):        if t:            return asarray(self.coeffs,t)        else:            return asarray(self.coeffs)    def __coerce__(self,other):        return None        def __repr__(self):        vals = repr(self.coeffs)        vals = vals[6:-1]        return "poly1d(%s)" % vals    def __len__(self):        return self.order    def __str__(self):        N = self.order        thestr = "0"        for k in range(len(self.coeffs)):            coefstr ='%.4g' % abs(self.coeffs[k])            if coefstr[-4:] == '0000':                coefstr = coefstr[:-5]            power = (N-k)            if power == 0:                if coefstr != '0':                    newstr = '%s' % (coefstr,)                else:                    if k == 0:                        newstr = '0'                    else:                        newstr = ''            elif power == 1:                if coefstr == '0':                    newstr = ''                elif coefstr == '1':                    newstr = 'x'                else:                                        newstr = '%s x' % (coefstr,)            else:                if coefstr == '0':                    newstr = ''                elif coefstr == '1':                    newstr = 'x**%d' % (power,)                else:                                        newstr = '%s x**%d' % (coefstr, power)            if k > 0:                if newstr != '':                    if self.coeffs[k] < 0:                        thestr = "%s - %s" % (thestr, newstr)                    else:                        thestr = "%s + %s" % (thestr, newstr)            elif (k == 0) and (newstr != '') and (self.coeffs[k] < 0):                thestr = "-%s" % (newstr,)            else:                thestr = newstr        return _raise_power(thestr)            def __call__(self, val):        return polyval(self.coeffs, val)    def __mul__(self, other):        if isscalar(other):            return poly1d(self.coeffs * other)        else:            other = poly1d(other)            return poly1d(polymul(self.coeffs, other.coeffs))    def __rmul__(self, other):        if isscalar(other):            return poly1d(other * self.coeffs)        else:            other = poly1d(other)            return poly1d(polymul(self.coeffs, other.coeffs))                def __add__(self, other):        other = poly1d(other)        return poly1d(polyadd(self.coeffs, other.coeffs))                    def __radd__(self, other):        other = poly1d(other)        return poly1d(polyadd(self.coeffs, other.coeffs))    def __pow__(self, val):        if not isscalar(val) or int(val) != val or val < 0:            raise ValueError, "Power to non-negative integers only."        res = [1]        for k in range(val):            res = polymul(self.coeffs, res)        return poly1d(res)    def __sub__(self, other):        other = poly1d(other)        return poly1d(polysub(self.coeffs, other.coeffs))    def __rsub__(self, other):        other = poly1d(other)        return poly1d(polysub(other.coeffs, self.coeffs))    def __div__(self, other):        if isscalar(other):            return poly1d(self.coeffs/other)        else:            other = poly1d(other)            return map(poly1d,polydiv(self.coeffs, other.coeffs))    def __rdiv__(self, other):        if isscalar(other):            return poly1d(other/self.coeffs)        else:            other = poly1d(other)            return map(poly1d,polydiv(other.coeffs, self.coeffs))    def __setattr__(self, key, val):        raise ValueError, "Attributes cannot be changed this way."    def __getattr__(self, key):        if key in ['r','roots']:            return roots(self.coeffs)        elif key in ['c','coef','coefficients']:            return self.coeffs        elif key in ['o']:            return self.order        else:            return self.__dict__[key]            def __getitem__(self, val):        ind = self.order - val        if val > self.order:            return 0        if val < 0:            return 0        return self.coeffs[ind]    def __setitem__(self, key, val):        ind = self.order - key        if key < 0:            raise ValueError, "Does not support negative powers."        if key > self.order:            zr = Numeric.zeros(key-self.order,self.coeffs.typecode())            self.__dict__['coeffs'] = Numeric.concatenate((zr,self.coeffs))            self.__dict__['order'] = key            ind = 0        self.__dict__['coeffs'][ind] = val        return    def integ(self, m=1, k=0):        return poly1d(polyint(self.coeffs,m=m,k=k))    def deriv(self, m=1):        return poly1d(polyder(self.coeffs,m=m))def freqz(b, a, worN=None, whole=0, plot=None):    """Compute frequency response of a digital filter.    Description:       Given the numerator (b) and denominator (a) of a digital filter compute       its frequency response.                  jw               -jw            -jmw           jw  B(e)    b[0] + b[1]e + .... + b[m]e        H(e) = ---- = ------------------------------------                  jw               -jw            -jnw               A(e)    a[0] + a[2]e + .... + a[n]e                 Inputs:       b, a --- the numerator and denominator of a linear filter.       worN --- If None, then compute at 512 frequencies around the unit circle.                If a single integer, the compute at that many frequencies.                Otherwise, compute the response at frequencies given in worN       whole -- Normally, frequencies are computed from 0 to pi (upper-half of                unit-circle.  If whole is non-zero compute frequencies from 0                to 2*pi.    Outputs: (h,w)       h -- The frequency response.       w -- The frequencies at which h was computed.    """    b, a = map(atleast_1d, (b,a))    if whole:        lastpoint = 2*pi    else:        lastpoint = pi    if worN is None:        N = 512        w = Num.arange(0,lastpoint,lastpoint/N)    elif isinstance(worN, types.IntType):        N = worN        w = Num.arange(0,lastpoint,lastpoint/N)    else:        w = worN    w = atleast_1d(w)    zm1 = exp(-1j*w)    h = polyval(b[::-1], zm1) / polyval(a[::-1], zm1)    # if not plot is None:    #    plot(w, h)    return h, w

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -