⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cmplx.c

📁 巴特沃斯、切比雪夫I和椭圆滤波器设计的源程序!非常难得! 简洁的C语言编写
💻 C
字号:
/*							cmplx.c * *	Complex number arithmetic * * * * SYNOPSIS: * * typedef struct { *      double r;     real part *      double i;     imaginary part *     }cmplx; * * cmplx *a, *b, *c; * * cadd( a, b, c );     c = b + a * csub( a, b, c );     c = b - a * cmul( a, b, c );     c = b * a * cdiv( a, b, c );     c = b / a * cneg( c );           c = -c * cmov( b, c );        c = b * * * * DESCRIPTION: * * Addition: *    c.r  =  b.r + a.r *    c.i  =  b.i + a.i * * Subtraction: *    c.r  =  b.r - a.r *    c.i  =  b.i - a.i * * Multiplication: *    c.r  =  b.r * a.r  -  b.i * a.i *    c.i  =  b.r * a.i  +  b.i * a.r * * Division: *    d    =  a.r * a.r  +  a.i * a.i *    c.r  = (b.r * a.r  + b.i * a.i)/d *    c.i  = (b.i * a.r  -  b.r * a.i)/d * ACCURACY: * * In DEC arithmetic, the test (1/z) * z = 1 had peak relative * error 3.1e-17, rms 1.2e-17.  The test (y/z) * (z/y) = 1 had * peak relative error 8.3e-17, rms 2.1e-17. * * Tests in the rectangle {-10,+10}: *                      Relative error: * arithmetic   function  # trials      peak         rms *    DEC        cadd       10000       1.4e-17     3.4e-18 *    IEEE       cadd      100000       1.1e-16     2.7e-17 *    DEC        csub       10000       1.4e-17     4.5e-18 *    IEEE       csub      100000       1.1e-16     3.4e-17 *    DEC        cmul        3000       2.3e-17     8.7e-18 *    IEEE       cmul      100000       2.1e-16     6.9e-17 *    DEC        cdiv       18000       4.9e-17     1.3e-17 *    IEEE       cdiv      100000       3.7e-16     1.1e-16 *//*				cmplx.c * complex number arithmetic *//*Cephes Math Library Release 2.8:  June, 2000Copyright 1984, 1995, 2000 by Stephen L. Moshier*/#include "mconf.h"#ifdef ANSIPROTextern double fabs ( double );extern double cabs ( cmplx * );extern double sqrt ( double );extern double atan2 ( double, double );extern double cos ( double );extern double sin ( double );extern double sqrt ( double );extern double frexp ( double, int * );extern double ldexp ( double, int );int isnan ( double );void cdiv ( cmplx *, cmplx *, cmplx * );void cadd ( cmplx *, cmplx *, cmplx * );#elsedouble fabs(), cabs(), sqrt(), atan2(), cos(), sin();double sqrt(), frexp(), ldexp();int isnan();void cdiv(), cadd();#endifextern double MAXNUM, MACHEP, PI, PIO2, INFINITY, NAN;/*typedef struct	{	double r;	double i;	}cmplx;*/cmplx czero = {0.0, 0.0};extern cmplx czero;cmplx cone = {1.0, 0.0};extern cmplx cone;/*	c = b + a	*/void cadd( a, b, c )register cmplx *a, *b;cmplx *c;{c->r = b->r + a->r;c->i = b->i + a->i;}/*	c = b - a	*/void csub( a, b, c )register cmplx *a, *b;cmplx *c;{c->r = b->r - a->r;c->i = b->i - a->i;}/*	c = b * a */void cmul( a, b, c )register cmplx *a, *b;cmplx *c;{double y;y    = b->r * a->r  -  b->i * a->i;c->i = b->r * a->i  +  b->i * a->r;c->r = y;}/*	c = b / a */void cdiv( a, b, c )register cmplx *a, *b;cmplx *c;{double y, p, q, w;y = a->r * a->r  +  a->i * a->i;p = b->r * a->r  +  b->i * a->i;q = b->i * a->r  -  b->r * a->i;if( y < 1.0 )	{	w = MAXNUM * y;	if( (fabs(p) > w) || (fabs(q) > w) || (y == 0.0) )		{		c->r = MAXNUM;		c->i = MAXNUM;		mtherr( "cdiv", OVERFLOW );		return;		}	}c->r = p/y;c->i = q/y;}/*	b = a   Caution, a `short' is assumed to be 16 bits wide.  */void cmov( a, b )void *a, *b;{register short *pa, *pb;int i;pa = (short *) a;pb = (short *) b;i = 8;do	*pb++ = *pa++;while( --i );}void cneg( a )register cmplx *a;{a->r = -a->r;a->i = -a->i;}/*							cabs() * *	Complex absolute value * * * * SYNOPSIS: * * double cabs(); * cmplx z; * double a; * * a = cabs( &z ); * * * * DESCRIPTION: * * * If z = x + iy * * then * *       a = sqrt( x**2 + y**2 ). *  * Overflow and underflow are avoided by testing the magnitudes * of x and y before squaring.  If either is outside half of * the floating point full scale range, both are rescaled. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -30,+30     30000       3.2e-17     9.2e-18 *    IEEE      -10,+10    100000       2.7e-16     6.9e-17 *//*Cephes Math Library Release 2.1:  January, 1989Copyright 1984, 1987, 1989 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*//*typedef struct	{	double r;	double i;	}cmplx;*/#ifdef UNK#define PREC 27#define MAXEXP 1024#define MINEXP -1077#endif#ifdef DEC#define PREC 29#define MAXEXP 128#define MINEXP -128#endif#ifdef IBMPC#define PREC 27#define MAXEXP 1024#define MINEXP -1077#endif#ifdef MIEEE#define PREC 27#define MAXEXP 1024#define MINEXP -1077#endifdouble cabs( z )register cmplx *z;{double x, y, b, re, im;int ex, ey, e;#ifdef INFINITIES/* Note, cabs(INFINITY,NAN) = INFINITY. */if( z->r == INFINITY || z->i == INFINITY   || z->r == -INFINITY || z->i == -INFINITY )  return( INFINITY );#endif#ifdef NANSif( isnan(z->r) )  return(z->r);if( isnan(z->i) )  return(z->i);#endifre = fabs( z->r );im = fabs( z->i );if( re == 0.0 )	return( im );if( im == 0.0 )	return( re );/* Get the exponents of the numbers */x = frexp( re, &ex );y = frexp( im, &ey );/* Check if one number is tiny compared to the other */e = ex - ey;if( e > PREC )	return( re );if( e < -PREC )	return( im );/* Find approximate exponent e of the geometric mean. */e = (ex + ey) >> 1;/* Rescale so mean is about 1 */x = ldexp( re, -e );y = ldexp( im, -e );		/* Hypotenuse of the right triangle */b = sqrt( x * x  +  y * y );/* Compute the exponent of the answer. */y = frexp( b, &ey );ey = e + ey;/* Check it for overflow and underflow. */if( ey > MAXEXP )	{	mtherr( "cabs", OVERFLOW );	return( INFINITY );	}if( ey < MINEXP )	return(0.0);/* Undo the scaling */b = ldexp( b, e );return( b );}/*							csqrt() * *	Complex square root * * * * SYNOPSIS: * * void csqrt(); * cmplx z, w; * * csqrt( &z, &w ); * * * * DESCRIPTION: * * * If z = x + iy,  r = |z|, then * *                       1/2 * Im w  =  [ (r - x)/2 ]   , * * Re w  =  y / 2 Im w. * * * Note that -w is also a square root of z.  The root chosen * is always in the upper half plane. * * Because of the potential for cancellation error in r - x, * the result is sharpened by doing a Heron iteration * (see sqrt.c) in complex arithmetic. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10     25000       3.2e-17     9.6e-18 *    IEEE      -10,+10    100000       3.2e-16     7.7e-17 * *                        2 * Also tested by csqrt( z ) = z, and tested by arguments * close to the real axis. */void csqrt( z, w )cmplx *z, *w;{cmplx q, s;double x, y, r, t;x = z->r;y = z->i;if( y == 0.0 )	{	if( x < 0.0 )		{		w->r = 0.0;		w->i = sqrt(-x);		return;		}	else		{		w->r = sqrt(x);		w->i = 0.0;		return;		}	}if( x == 0.0 )	{	r = fabs(y);	r = sqrt(0.5*r);	if( y > 0 )		w->r = r;	else		w->r = -r;	w->i = r;	return;	}/* Approximate  sqrt(x^2+y^2) - x  =  y^2/2x - y^4/24x^3 + ... . * The relative error in the first term is approximately y^2/12x^2 . */if( (fabs(y) < 2.e-4 * fabs(x))   && (x > 0) )	{	t = 0.25*y*(y/x);	}else	{	r = cabs(z);	t = 0.5*(r - x);	}r = sqrt(t);q.i = r;q.r = y/(2.0*r);/* Heron iteration in complex arithmetic */cdiv( &q, z, &s );cadd( &q, &s, w );w->r *= 0.5;w->i *= 0.5;}double hypot( x, y )double x, y;{cmplx z;z.r = x;z.i = y;return( cabs(&z) );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -