⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ellpj.c

📁 巴特沃斯、切比雪夫I和椭圆滤波器设计的源程序!非常难得! 简洁的C语言编写
💻 C
字号:
/*							ellpj.c * *	Jacobian Elliptic Functions * * * * SYNOPSIS: * * double u, m, sn, cn, dn, phi; * int ellpj(); * * ellpj( u, m, _&sn, _&cn, _&dn, _&phi ); * * * * DESCRIPTION: * * * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), * and dn(u|m) of parameter m between 0 and 1, and real * argument u. * * These functions are periodic, with quarter-period on the * real axis equal to the complete elliptic integral * ellpk(1.0-m). * * Relation to incomplete elliptic integral: * If u = ellik(phi,m), then sn(u|m) = sin(phi), * and cn(u|m) = cos(phi).  Phi is called the amplitude of u. * * Computation is by means of the arithmetic-geometric mean * algorithm, except when m is within 1e-9 of 0 or 1.  In the * latter case with m close to 1, the approximation applies * only for phi < pi/2. * * ACCURACY: * * Tested at random points with u between 0 and 10, m between * 0 and 1. * *            Absolute error (* = relative error): * arithmetic   function   # trials      peak         rms *    DEC       sn           1800       4.5e-16     8.7e-17 *    IEEE      phi         10000       9.2e-16*    1.4e-16* *    IEEE      sn          50000       4.1e-15     4.6e-16 *    IEEE      cn          40000       3.6e-15     4.4e-16 *    IEEE      dn          10000       1.3e-12     1.8e-14 * *  Peak error observed in consistency check using addition * theorem for sn(u+v) was 4e-16 (absolute).  Also tested by * the above relation to the incomplete elliptic integral. * Accuracy deteriorates when u is large. * *//*							ellpj.c		*//*Cephes Math Library Release 2.0:  April, 1987Copyright 1984, 1987 by Stephen L. MoshierDirect inquiries to 30 Frost Street, Cambridge, MA 02140*/#include "mconf.h"extern double PIO2, MACHEP;int ellpj( u, m, sn, cn, dn, ph )double u, m;double *sn, *cn, *dn, *ph;{double ai, b, phi, t, twon;double sqrt(), fabs(), sin(), cos(), asin(), tanh();double sinh(), cosh(), atan(), exp();double a[9], c[9];int i;/* Check for special cases */if( m < 0.0 || m > 1.0 )	{	mtherr( "ellpj", DOMAIN );	*sn = 0.0;	*cn = 0.0;	*ph = 0.0;	*dn = 0.0;	return(-1);	}if( m < 1.0e-9 )	{	t = sin(u);	b = cos(u);	ai = 0.25 * m * (u - t*b);	*sn = t - ai*b;	*cn = b + ai*t;	*ph = u - ai;	*dn = 1.0 - 0.5*m*t*t;	return(0);	}if( m >= 0.9999999999 )	{	ai = 0.25 * (1.0-m);	b = cosh(u);	t = tanh(u);	phi = 1.0/b;	twon = b * sinh(u);	*sn = t + ai * (twon - u)/(b*b);	*ph = 2.0*atan(exp(u)) - PIO2 + ai*(twon - u)/b;	ai *= t * phi;	*cn = phi - ai * (twon - u);	*dn = phi + ai * (twon + u);	return(0);	}/*	A. G. M. scale		*/a[0] = 1.0;b = sqrt(1.0 - m);c[0] = sqrt(m);twon = 1.0;i = 0;while( fabs(c[i]/a[i]) > MACHEP )	{	if( i > 7 )		{		mtherr( "ellpj", OVERFLOW );		goto done;		}	ai = a[i];	++i;	c[i] = ( ai - b )/2.0;	t = sqrt( ai * b );	a[i] = ( ai + b )/2.0;	b = t;	twon *= 2.0;	}done:/* backward recurrence */phi = twon * a[i] * u;do	{	t = c[i] * sin(phi) / a[i];	b = phi;	phi = (asin(t) + phi)/2.0;	}while( --i );*sn = sin(phi);t = cos(phi);*cn = t;*dn = t/cos(phi-b);*ph = phi;return(0);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -