⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wrong_smooth.m

📁 贝叶斯网络matlab源程序,可用于分类,欢迎大家下载测试
💻 M
字号:
function [marginal, msg, loglik] = smooth_evidence(engine, evidence)% [marginal, msg, loglik] = smooth_evidence(engine, evidence) (pearl_dbn)disp('warning: pearl_dbn smoothing is broken');[ss T] = size(evidence);bnet = bnet_from_engine(engine);bnet2 = dbn_to_bnet(bnet, T);ns = bnet2.node_sizes;hnodes = mysetdiff(1:ss, engine.onodes);hnodes = hnodes(:)';onodes2 = unroll_set(engine.onodes(:), ss, T);onodes2 = onodes2(:)';hnodes2 = unroll_set(hnodes(:), ss, T);hnodes2 = hnodes2(:)';[engine.parent_index, engine.child_index] = mk_pearl_msg_indices(bnet2);msg = init_msgs(bnet2.dag, ns, evidence, bnet2.equiv_class, bnet2.CPD);verbose = 0;pot_type = 'd';niter = 1;for iter=1:niter  % FORWARD  for t=1:T    if verbose, fprintf('t=%d\n', t); end    % each hidden node absorbs lambda from its observed child (if any)    for i=hnodes      c = engine.obschild(i);      if c > 0	if t==1	  fam = family(bnet.dag, c);	  e = bnet.equiv_class(c, 1);	  CPDpot = CPD_to_pot(pot_type, bnet.CPD{e}, fam, bnet.node_sizes(:), bnet.cnodes(:), evidence(:,1));	else	  fam = family(bnet.dag, 2); % within 2 slice network	  e = bnet.equiv_class(c, 2);	  CPDpot = CPD_to_pot(pot_type, bnet.CPD{e}, fam, bnet.node_sizes(:), bnet.cnodes(:), evidence(:,t-1:t));	end	temp = pot_to_marginal(CPDpot);	n = i + (t-1)*ss;	lam_msg = normalise(temp.T);	j = engine.child_index{n}(c+(t-1)*ss);	assert(j==1);	msg{n}.lambda_from_child{j} = lam_msg;	if verbose, fprintf('%d sends lambda to %d\n', c + (t-1)*ss, n); disp(lam_msg); end      end    end        % update pi    for i=hnodes      n = i + (t-1)*ss;      ps = parents(bnet2.dag, n);      if t==1	e = bnet.equiv_class(i,1);      else	e = bnet.equiv_class(i,2);      end      msg{n}.pi = compute_pi(bnet.CPD{e}, n, ps, msg);      if verbose, fprintf('%d computes pi\n', n); disp(msg{n}.pi); end    end        % send pi msg to children in next slice    for i=hnodes      n = i + (t-1)*ss;      %cs = myintersect(children(bnet2.dag, n), hnodes2);      cs = children(bnet2.dag, n);      for c=cs(:)'	j = engine.parent_index{c}(n); % n is c's j'th parent	pi_msg = normalise(compute_pi_msg(n, cs, msg, c, ns));	msg{c}.pi_from_parent{j} = pi_msg;	if verbose, fprintf('%d sends pi to %d\n', n, c); disp(pi_msg); end      end    end  end  % BACKWARD  for t=T:-1:1    if verbose, fprintf('t = %d\n', t); end    % update lambda    for i=hnodes      n = i + (t-1)*ss;      cs = children(bnet2.dag, n);      msg{n}.lambda = compute_lambda(n, cs, msg, ns);      if verbose, fprintf('%d computes lambda\n', n); disp(msg{n}.lambda); end    end        % send lambda msgs to hidden parents in prev slcie    for i=hnodes      n = i + (t-1)*ss;      %ps = myintersect(parents(bnet2.dag, n), hnodes2);      ps = parents(bnet2.dag, n);      for p=ps(:)'	j = engine.child_index{p}(n); % n is p's j'th child	if t > 1	  e = bnet.equiv_class(i, 2);	else	  e = bnet.equiv_class(i, 1);	end	lam_msg = normalise(compute_lambda_msg(bnet.CPD{e}, n, ps, msg, p));	msg{p}.lambda_from_child{j} = lam_msg;	if verbose, fprintf('%d sends lambda to %d\n', n, p); disp(lam_msg); end      end     end            % send pi msg to observed children     if 0    for i=hnodes      n = i + (t-1)*ss;      cs = myintersect(children(bnet2.dag, n), onodes2);      %cs = children(bnet2.dag, n);      for c=cs(:)'	j = engine.parent_index{c}(n); % n is c's j'th parent	pi_msg = normalise(compute_pi_msg(n, cs, msg, c, ns));	msg{c}.pi_from_parent{j} = pi_msg;	if verbose, fprintf('%d sends pi to %d\n', n, c); disp(pi_msg); end      end    end    end      endendmarginal = cell(ss,T);lik = zeros(1,ss*T);for t=1:T  for i=hnodes    n = i + (t-1)*ss;    [bel, lik(n)] = normalise(msg{n}.pi .* msg{n}.lambda);         marginal{i,t} = bel;  endendloglik = 0;%loglik = sum(log(lik));%%%%%%%function lambda = compute_lambda(n, cs, msg, ns)% Pearl p183 eq 4.50lambda = prod_lambda_msgs(n, cs, msg, ns);%%%%%%%function pi_msg = compute_pi_msg(n, cs, msg, c, ns)% Pearl p183 eq 4.53 and 4.51pi_msg = msg{n}.pi .* prod_lambda_msgs(n, cs, msg, ns, c);%%%%%%%%%function lam = prod_lambda_msgs(n, cs, msg, ns, except)if nargin < 5, except = -1; end%lam = msg{n}.lambda_from_self(:);lam = ones(ns(n), 1);for i=1:length(cs)  c = cs(i);  if c ~= except    lam = lam .* msg{n}.lambda_from_child{i};  endend   %%%%%%%%%function msg = init_msgs(dag, ns, evidence, eclass, CPD)% INIT_MSGS Initialize the lambda/pi message and state vectors (pearl_dbn)% msg =  init_msgs(dag, ns, evidence)N = length(dag);msg = cell(1,N);observed = ~isemptycell(evidence(:));for n=1:N  ps = parents(dag, n);  msg{n}.pi_from_parent = cell(1, length(ps));  for i=1:length(ps)    p = ps(i);    msg{n}.pi_from_parent{i} = ones(ns(p), 1);  end    cs = children(dag, n);  msg{n}.lambda_from_child = cell(1, length(cs));  for i=1:length(cs)    c = cs(i);    msg{n}.lambda_from_child{i} = ones(ns(n), 1);  end  msg{n}.lambda = ones(ns(n), 1);  msg{n}.pi = ones(ns(n), 1);  % Initialize the lambdas with any evidence  if observed(n)    v = evidence{n};    msg{n}.lambda = zeros(ns(n), 1);    msg{n}.lambda(v) = 1; % delta function    msg{n}.lambda = [];  end        end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -